Finite Element Simulation of Ultrasonic Vibration Orthogonal Cutting of Ti6Al4V

2010 ◽  
Vol 97-101 ◽  
pp. 1933-1936 ◽  
Author(s):  
Zhi An Tang ◽  
Chang Yi Liu ◽  
Jun Jie Yi

In this paper Finite Element Methods (FEM) were used to simulate the ultrasonic vibration Orthogonal cutting of titanium alloy Ti6Al4V. Machining conditions were similar to those used for manufacture. Material constitutive applied Johnson-Cook model combining elastic and plastic deformation, the material hardening for extreme shear strain and strain rate, material softening for adiabatic shear of chip flow-zone. Chip separated criteria adopted arbitrary Lagrangian Euler algorithm (ALE). Heat sources included the rake face chip flow under conditions of seizure and chip/tool friction, clearance face tool/workpiece friction. Thus, the orthogonal ultrasonic vibration machining of Ti6Al4V FEM models were established. The simulation results included the chip formation, the cutting force/stress and temperature distributions through the primary shear zone and the chip/tool contact region. The cutting force, cutting temperature of the ultrasonically and conventionally machining were compared. The reasons of the decrease of chip deformation coefficients, cutting force and temperature and the increase of shear angle in ultrasonic machining were discussed.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Xuefeng Zhao ◽  
Hao Qin ◽  
Zhiguo Feng

Tool edge preparation can improve the tool life, as well as cutting performance and machined surface quality, meeting the requirements of high-speed and high-efficiency cutting. In general, prepared tool edges could be divided into symmetric or asymmetric edges. In the present study, the cemented carbide tools were initially edge prepared through drag finishing. The simulation model of the carbide cemented tool milling steel was established through Deform software. Effects of edge form factor, spindle speed, feed per tooth, axial, and radial cutting depth on the cutting force, the tool wear, the cutting temperature, and the surface quality were investigated through the orthogonal cutting simulation. The simulated cutting force results were compared to the results obtained from the orthogonal milling experiment through the dynamometer Kistler, which verified the simulation model correctness. The obtained results provided a basis for edge preparation effect along with high-speed and high effective cutting machining comprehension.


Magnesium alloys have a tremendous possibility for biomedical applications due to their good biocompatibility, integrity and degradability, but their low ignition temperature and easy corrosive property restrict the machining process for potential biomedical applications. In this research, ultrasonic vibration-assisted ball milling (UVABM) for AZ31B is investigated to improve the cutting performance and get specific surface morphology in dry conditions. Cutting force and cutting temperatures are measured during UVABM. Surface roughness is measured with a white light interferometer after UVABM. The experimental results show cutting force and cutting temperature reduce due to ultrasonic vibration, and surface roughness decreases by 34.92%, compared with that got from traditional milling, which indicates UVABM is suitable to process AZ31B for potential biomedical applications.


2021 ◽  
Author(s):  
Weibo Xie ◽  
Xikui Wang ◽  
Erbo Liu ◽  
Jian Wang ◽  
Xiaobin Tang ◽  
...  

Abstract In order to study the influence of rotational speed and amplitude on the surface integrity, TC18 titanium alloy samples were milled by the process of conventional milling and longitudinal ultrasonic vibration assisted milling. The experimental data were obtained by dynamometer, thermometer, scanning electron microscope, X-ray diffractometer and three-dimensional surface topography instrument for observation and analysis. The results show that the rotational speed has a significant effect on the cutting force, cutting temperature, surface morphology and surface residual stress. Compared with ordinary milling, the surface micro-texture produced by ultrasonic vibration milling is more regular, , and with the increase of rotational speed, the influence of ultrasonic vibration on cutting force and cutting temperature decrease. There are adverse effects on surface roughness after ultrasonic vibration superposition. The influence of ultrasonic vibration on the surface residual compressive stress is also greatly reduced when the rotational speed is greater than 2400 rpm. In addition, a certain depth of plastic deformation layer can be formed under the surface of ultrasonic vibration machining, and the depth of deformation layer increases with the increase of vibration.


Author(s):  
Hongtao Ding ◽  
Yung C. Shin

Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of American Iron and Steel Institute (AISI) 1045 steel based on a true metallo-thermomechanical coupled analysis. A metallo-thermomechanical coupled material model is developed and a finite element model (FEM) is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using abaqus. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7 deg to 5 deg. A good agreement is achieved in chip formation, cutting force, and cutting temperature between the model predictions and the experimental data.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


2020 ◽  
Vol 856 ◽  
pp. 50-56
Author(s):  
Kundan Kumar Prasad ◽  
Santosh Kumar Tamang ◽  
M. Chandrasekaran

The finite element-based machining simulations for evaluation/computation of different machining responses (i.e., cutting temperature, tool wear, cutting force, and power/energy consumption) are investigated by number of researchers. In this work, finite element machining simulation was performed to obtain knowledge about cutting forces during machining of hard materials. Titanium alloy (Ti-6Al-4V) has been increasingly used in aerospace and biomedical applications due to high toughness and good corrosion resistance. The high speed machining (HSM) simulation of Ti-6Al-4V work-piece using carbide tool coated with TiCN has been conducted with different combination of cutting conditions for prediction of main cutting force (Fz). The simulated result obtained from Deform 3D software is validated with experimental result and it was found that the result found in good agreement. The parametric variation shows that depth of cut and feed are influencing parameters on cutting force.


2013 ◽  
Vol 579-580 ◽  
pp. 202-207
Author(s):  
Guo He Li ◽  
Hou Jun Qi ◽  
Bing Yan

For the high speed cutting process of hardened 45 steel (45HRC), a finite element simulation of cutting deformation, cutting force and cutting temperature is finished with the large general finite element software ABAQUS. Through the building of geometry model, material model and heat conduction model, also the determination of boundary conditions, separation rule and friction condition, a thermal mechanical coupling finite element model of high speed cutting for hardened 45 steel is built. The serrated chip, cutting force and cutting temperature can be predicted. The comparison of experiment and simulation shows the validity of the model. The influence of cutting parameters on cutting process is investigated by the simulation under different cutting depthes and rake angles. The results show that as the increase of rake angle, the segment degree, cutting force and cutting temperature decrease. But the segment degree, also the cutting force and cutting temperature increase with the increase of cutting depth. This study is useful for the selection of cutting parameters of hardened steel.


2020 ◽  
Vol 10 (13) ◽  
pp. 4676 ◽  
Author(s):  
Wenjun Cao ◽  
Jun Zha ◽  
Yaolong Chen

The disc-cutter is a finishing tool for the ultrasonic-cutting of paper honeycomb-core material. The cutting state directly affects the machining accuracy and surface quality of the workpiece. The cutting force is an important physical quantity and the cause of ultrasonic cutting defects of the honeycomb-core material. Due to differences in the mechanical properties and cutting performance of honeycomb-core materials and commonly used metal materials, existing metal-cutting-force models cannot be applied to the calculation of ultrasonic cutting forces in the processing of honeycomb-core materials. In response to this problem—combined with actual working conditions using the ABAQUS finite element analysis software—a finite element simulation model of the ultrasonic vibration-assisted cutting force of the disc-cutter on the honeycomb-core material was established, and the cutting curves and values were obtained. The experiment of ultrasonic vibration cutting of the disc-cutter proves that from the surface morphology of the honeycomb core, the milling-width has the greatest influence on the cutting force, and the cutting-depth has the smallest influence on the cutting force. The maximum error between the cutting force experimental results and the finite element simulation results under the same cutting conditions was 13.2%, which means that the established cutting-force finite element model is more accurate and can be used to predict the cutting in honeycomb ultrasonic vibration-assisted cutting-force value. Finally, based on the response surface method, a three-dimensional cutting force prediction model of the ultrasonic cutting honeycomb core of the disc-cutter was established by using the simulation model data. The results of this study can provide a useful basis for the improvement of cutting performance and processing efficiency in the processing of paper honeycomb-core materials.


2012 ◽  
Vol 268-270 ◽  
pp. 422-425
Author(s):  
Mu Lan Wang ◽  
Jun Ming Hou ◽  
Bao Sheng Wang ◽  
Wen Zheng Ding

The application of Finite Element Method (FEM) in cutting force model for Aluminium alloy work-piece is useful to reduce the production costs and shorten the experimental period. Firstly, the theoretical model of the orthogonal cutting and the oblique cutting are analyzed in this paper. And then, the corresponding finite element models are theoretically constructed. By comparing the results, the following conclusions are drawn: with the increase of the cutting thickness, the cutting force increasing is in an enhancement tendency. The oblique cutting model of overall tool is more conductive to the subsequent runout and the flutter analysis.


Sign in / Sign up

Export Citation Format

Share Document