scholarly journals Optimal Linear Control Driven for Piezoelectric Non-Linear Energy Harvesting on Non-Ideal Excitation Sourced

2014 ◽  
Vol 971-973 ◽  
pp. 1107-1112
Author(s):  
Douglas da Costa Ferreira ◽  
Fábio Roverto Chavarette ◽  
Nelson José Peruzzi

Non-linear energy harvesting system was project to enhance interaction to ambient vibration that is wide band and low power which difficult the design for resonant solution. To improve efficiency of a non-linear design it was project a control system based in optimal linear control (OLC). Applying numerical evaluations it was possible to analyze the kinetic energy from the system as also the resulting output voltage. As main result there was a considerable increase of output voltage due controlled system in comparison to open loop for the same excitation.

Author(s):  
Estevão Fuzaro de Almeida ◽  
Fabio Roberto Chavarette ◽  
Douglas da Costa Ferreira

Author(s):  
Andres F. Arrieta ◽  
Tommaso Delpero ◽  
Paolo Ermanni

Vibration based energy harvesting has received extensive attention in the engineering community for the past decade thanks to its potential for autonomous powering small electronic devices. For this purpose, linear electromechanical devices converting mechanical to useful electrical energy have been extensively investigated. Such systems operate optimally when excited close to or at resonance, however, for these lightly damped structures small variations in the ambient vibration frequency results in a rapid reduction of performance. The idea to use nonlinearity to obtain large amplitude response in a wider frequency range, has shown the potential for achieving so called broadband energy harvesting. An interesting type of nonlinear structures exhibiting the desired broadband response characteristics are bi-stable composites. The bi-stable nature of these composites allows for designing several ranges of wide band large amplitude oscillations, from which high power can be harvested. In this paper, an analytical electromechanical model of cantilevered piezoelectric bi-stable composites for broadband harvesting is presented. The model allows to calculate the modal characteristics, such as natural frequencies and mode shapes, providing a tool for the design of bi-stable composites as harvesting devices. The generalised coupling coefficient is used to select the positioning of piezoelectric elements on the composites for maximising the conversion energy. The modal response of a test specimen is obtained and compared to theoretical results showing good agreement, thus validating the model.


2019 ◽  
Vol 25 (16) ◽  
pp. 2191-2203 ◽  
Author(s):  
R. Dehghani ◽  
H. M. Khanlo

In this paper, an adaptive chaos control is proposed for a typical vibratory piezomagnetoelastic energy harvesting system to return the chaotic behavior to a periodic one. Piezomagnetoelastic energy harvesting systems show chaotic behaviors in spite of harmonic input. Although, the chaotic behavior of the system gives higher output voltage than the periodic motion, it is preferred to the output voltage as this is periodic for charging a battery or a capacitor efficiently. Therefore, the chaos control is important in this system. The physical model is composed of the upper and lower piezoelectric layers on a cantilever taper beam, one attached tip magnet, and two external magnets (EM). Position of the EM is controlled by inputs. Firstly, chaotic and periodic regions are detected by utilizing the bifurcation diagrams, phase plan portrait, and Poincaré maps. Then an adaptive controller is proposed for controlling of the chaotic behaviors in the presence of uncertainty due to magnetic forces. The control law is derived based on the inverse dynamic method and the uncertainty elements of the controller are estimated using radial basis function (RBF) network. The weights of the RBF network are obtained using an adaptation law. The adaptation laws are derived based on Lyapunov stability theory and a projection operator. The distance of the tip magnet and the EM as well as the gap distance of two EM are used to control the chaotic behavior. Simulation results show that the proposed controller can return the chaotic motion to a periodic one in spite of the uncertainties in the magnetic forces.


2012 ◽  
Vol 23 (13) ◽  
pp. 1423-1432 ◽  
Author(s):  
Roszaidi Ramlan ◽  
Michael J Brennan ◽  
Brian R Mace ◽  
Stephen G Burrow

The research trend for harvesting energy from the ambient vibration sources has moved from using a linear resonant generator to a non-linear generator in order to improve on the performance of a linear generator; for example, the relatively small bandwidth, intolerance to mistune and the suitability of the device for low-frequency applications. This article presents experimental results to illustrate the dynamic behaviour of a dual-mode non-linear energy-harvesting device operating in hardening and bi-stable modes under harmonic excitation. The device is able to change from one mode to another by altering the negative magnetic stiffness by adjusting the separation gap between the magnets and the iron core. Results for the device operating in both modes are presented. They show that there is a larger bandwidth for the device operating in the hardening mode compared to the equivalent linear device. However, the maximum power transfer theory is less applicable for the hardening mode due to occurrence of the maximum power at different frequencies, which depends on the non-linearity and the damping in the system. The results for the bi-stable mode show that the device is insensitive to a range of excitation frequencies depending upon the input level, damping and non-linearity.


Author(s):  
Ngoc-Thinh Quach ◽  
Thieu Quang Quoc Viet ◽  
Pham Van Toan ◽  
Minh-Trung Dao

This paper presents a model of an intelligent energy harvesting system from microbial fuel cells (MFCs) in the wastewater treatment process. The model consists of two direct current (DC/DC) converters connected in a cascade. One DC/DC converter is used to capture energy from MFC and store it in a supercapacitor. The other DC/DC converter is responsible for increasing the low output voltage to a higher voltage level. In the paper, the MFC is modeled by a DC voltage source instead of a real MFC that contains wastewater inside it. The experimental results demonstrate that the model of an intelligent energy harvesting system can increase the low output voltage of MFC up to 3.3 V and achieve intermittent output power at a high level that can use in practice.


2021 ◽  
Vol 11 (21) ◽  
pp. 9979
Author(s):  
Ying Zhang ◽  
Xiaxia Duan ◽  
Yu Shi ◽  
Xiaole Yue

In the stage of modelling, measuring, mechanical processing and manufacturing of the nonlinear energy harvesting system, deviations and errors of system parameters are inevitable. Even slight variation of key parameters may have a significant influence on the output voltages, especially for the multi-stable nonlinear case. Therefore, the investigation of dynamic behaviors for the tristable energy harvesting system with uncertain parameters is of important value both for research and application. In this paper, the uncertainty of a tristable piezoelectric vibration energy harvester with a random coefficient ahead of the nonlinear term is studied. By using the Chebyshev polynomial approximation, this tristable energy harvesting system is first reduced into an equivalent deterministic form, the ensemble mean responses of which are derived to exhibit the stochastic behaviors. The periodic and chaotic motions, bifurcations and crises under different conditions are analyzed. The results show that the output voltage is sensitive to the uncertainty of the nonlinear coefficient, which leads to unstable behavior around the bifurcation and crisis points particularly. Exploring the influence pattern of uncertain parameters on the output voltage and avoiding the unstable parameter intervals are essential for optimizing the structure. It can further improve the efficiency of the nonlinear energy harvesting system.


2020 ◽  
Vol 18 (03) ◽  
pp. 604-612
Author(s):  
Jonathan Martinez Moreno ◽  
Agustin Santiago Medina Vazquez ◽  
Carlos Alberto Bonilla Barragan ◽  
Jose Martin Villegas Gonzalez ◽  
Juan Carlos Aldaz Rosas

2015 ◽  
Vol 719-720 ◽  
pp. 417-425 ◽  
Author(s):  
Husan Ali ◽  
Xian Cheng Zheng ◽  
Shahbaz Khan ◽  
Waseem Abbas ◽  
Dawar Awan

The switched mode dc-dc converters are some of the most widely used power electronics circuits because of high conversion efficiency and flexible output voltage. Many methods have been developed for the control of dc-dc converters. This paper deals with design of controller for dc-dc buck converter using various control techniques. The first two control techniques are based on classical or linear control methods i.e. PI and PID control, while the other two control technique are based on non linear control method i.e. Sliding Mode Control (SMC) and Sliding Mode Proportional Integral Derivative Control (SMC-PID). The output voltage and the inductor current of the applied control techniques are analyzed and compared in transient and steady state region. Also the robustness of the buck converter system is tested for load changes and input voltage variations. Matlab/Simulink is used for the simulations. The detailed simulation results are presented, which compare the performance of the designed controllers for various cases. The results show that the non linear control for DC/DC Buck converter proves to be more robust than linear control especially when dynamic tests are applied.


Sign in / Sign up

Export Citation Format

Share Document