The Modeling and Simulation of Pneumatic ABS Pressure Regulator Based on AMESim

2014 ◽  
Vol 971-973 ◽  
pp. 811-815 ◽  
Author(s):  
Tian Fei Ma ◽  
Qian Chen

The pneumatic ABS pressure regulator of commercial vehicle is submitted to study in this paper. Its structure and operating principle are introduced, and a simulation model based on the AMESim is established on the basis of its mathematical model. Then the static characteristics and dynamic characteristics are researched by simulation model and the characteristic curves are compared with experimental data for the verification. The results show that simulation curves and experiment curves are in good agreement, which can be tolerated in the engineering.

1982 ◽  
Vol 24 (2) ◽  
pp. 103-111 ◽  
Author(s):  
S. L. Grassie ◽  
R. W. Gregory ◽  
K. L. Johnson

The dynamical response in the frequency range 50–1500 Hz is investigated of a railway wheelset resting on the track and excited vertically, laterally and longitudinally at a point of contact. A mathematical model of a railway wheelset is developed which comprises a few simple components to which analytical methods can be applied. Good agreement is obtained between experimental data and calculations made using this model. For a given sinusoidal displacement imposed between wheel and rail, the contact force is in general greatest longitudinally and least laterally.


1987 ◽  
Vol 109 (3) ◽  
pp. 197-202 ◽  
Author(s):  
M. Acar ◽  
R. K. Turton ◽  
G. R. Wray

The air-jet texturing process, a purely mechanical means of texturing continuous filament yarns, is described. Industrial texturing nozzles are reviewed and categorized in two groups, either as converging-diverging or cylindrical type nozzles. A mathematical model is developed for the complex airflow in cylindrical type texturing nozzles, and experimental data obtained from various nozzles verify the flow predicted by this model. The mathematical model is also shown to be in good agreement with the data obtained from a modified experimental nozzle, which has a trumpet shaped diverging exit. Further experimental work with a scaled-up model of a typical industrial texturing nozzle is also reported.


Author(s):  
S K Padhy

In this paper the experiments conducted for the measurement of oil flow in the rotary compressor are described. The experimental data are compared against the theoretical prediction from the mathematical model developed (1) and a good agreement is found. In addition, experimental data from previously published literature are also used to verify the mathematical model. A sensitivity study is carried out to predict the behaviour of the rotary compressor for the oil flow at different conditions and with different dimensions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
E. A. Mousa

Numerical prediction is performed on the reduction of wüstite under simulated blast furnace conditions using factorial design approach. Wüstite sinter samples with different basicity (0.5, 1.0, and 2.0) are reduced with a gas mixture consisting of 30% CO, 10% H2, 5% CO2, and 55% N2 at 950–1100°C. In all cases, the reduction degree of wüstite increased with basicity and temperature. A 23 factorial design is applied to derive a regression model based on the experimental data of acidic (CaO/SiO2 = 0.5) and basic (CaO/SiO2 = 2.0) wüstite which is reduced at 950°C and 1100°C for 5 and 35 min. The developed mathematical model is applied to predict the reduction degree of wüstite at different basicity (0.5, 1.0, and 2.0), interval of time (5–35 min), and temperatures (950, 1000, 1050°C, and 1100°C). In general, the results of the driven models are found to be in good agreement with the experimental data of reduction of wüstite in many cases. The MATLAB program is used to carry out the required calculations.


2012 ◽  
Vol 163 ◽  
pp. 281-285
Author(s):  
Meng Li ◽  
Xu Dong Pan ◽  
Guang Lin Wang ◽  
Bo Yan Song

In this paper, we build a simulation model of the two stage flapper-nozzle electro hydraulic servovalve with the hydraulic component design libraries and the AMESet secondary development of modeling in AMESim simulation environment. By adjusting the parameters of the model, the performance of the servovalve were analyzed. At the same time, we can get the characteristic curve of the servovalve. These characteristic curves can describe the static and dynamic characteristics of the valve which can greatly guide for the study of the servovalve.


2013 ◽  
Vol 774-776 ◽  
pp. 30-34
Author(s):  
Pei Cheng Shi ◽  
Yang Min Sun

On the basis of a newly-built mechanical model of rubber mounting and nonlinear mathematical model, the dynamic characteristics of rubber mounts were simulated and contrastively tested in frequency domain by using simulation software.Results indicate that the nonlinear simulation model of rubber mounts built in this paper can apply to the research of the low and high frequency vibration of rubber mounts.This model can also be applied to the design of rubber mounting products, which has certain engineering application value.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Ziqian Chen ◽  
Janne Dragsted ◽  
Simon Furbo ◽  
Bengt Perers ◽  
Jianhua Fan

A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapor in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops.


2021 ◽  
Vol 257 ◽  
pp. 03047
Author(s):  
Zhehua Du ◽  
Xin Lin

A simple mathematical model is proposed to account for emissions of Volatile Organic Compounds (VOCs) from three-layer building materials. The model considers both the diffusion within three layer building materials and the mass transfer resistance through the air boundary layer. A general solution method based on Laplace transform is presented. Compared to other models capable of accounting for emissions of VOCs from multi layer building materials, the present model is fully analytical instead of being numerical. The present model was validated by the experimental data from the specially designed test. The results indicated that there was a good agreement between the model predictions and the experimental data. It can also be seen from calculation that model ignoring the boundary layer resistance cannot fully reflect the real situation.


1968 ◽  
Vol 90 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E. B. Qvale ◽  
J. L. Smith

A mathematical model of Stirling-type engines has been developed. The complexity of the problem has been reduced by analyzing the various components of the engine (heat exchangers, regenerator, and cylinders) separately for cyclically steady conditions, and by selecting pressure, temperature, and mass as the independent variables. The required piston displacements are a computed result. Losses due to flow friction, piston blow-by, and finite heat transfer rates have been accounted for by applying correction factors to the basic performance which is computed without these effects. The theory has been carried out for engines, but it is equally valid for refrigerators with minor modification. The theory is in good agreement with available experimental data.


2016 ◽  
Vol 12 (2) ◽  
pp. 189-194 ◽  
Author(s):  
Zhi-gang Huang ◽  
Yun-xuan Weng ◽  
Nan Fu ◽  
Zong-qiang Fu ◽  
Dong Li ◽  
...  

Abstract Mathematical models including mass and energy conservation were developed in order to predict the outlet particles temperature and moisture. As the inlet air temperature increased, the outlet particles temperature increased as well and the outlet particles moisture decreased quickly. The outlet particles temperature and moisture changed a little as a function of the speed of rotation at the low inlet air temperature, while the outlet particles temperature and moisture increased very apparently with the speed of rotation increased at the high inlet air temperature. The error of the simulation results compared to the experimental data showed good accuracy for particles temperature and moisture content. The mathematical model performs well to predict the outlet particles temperature and moisture content.


Sign in / Sign up

Export Citation Format

Share Document