The Behaviour of Railway Wheelsets and Track at High Frequencies of Excitation

1982 ◽  
Vol 24 (2) ◽  
pp. 103-111 ◽  
Author(s):  
S. L. Grassie ◽  
R. W. Gregory ◽  
K. L. Johnson

The dynamical response in the frequency range 50–1500 Hz is investigated of a railway wheelset resting on the track and excited vertically, laterally and longitudinally at a point of contact. A mathematical model of a railway wheelset is developed which comprises a few simple components to which analytical methods can be applied. Good agreement is obtained between experimental data and calculations made using this model. For a given sinusoidal displacement imposed between wheel and rail, the contact force is in general greatest longitudinally and least laterally.

1993 ◽  
Vol 115 (3) ◽  
pp. 387-391 ◽  
Author(s):  
S. K. Ganapathi ◽  
F. E. Talke

A model to establish the correlation between wear in constant speed drag testing and contact start/stop testing is developed. The model is based on the Archard wear equation and uses the quasi-steady Kita-Kogure-Mitsuya model for the transition of a slider from sliding to flying to calculate the velocity dependent contact force between the slider and disk during start/stop. Experimental results for the wear of a zirconia overcoated disk are obtained for both start/stop and constant speed drag testing as a function of the number of repeated cycles using optical profilometry. The correlation between predictions and experimental data shows good agreement for up to at least 10,000 cycles of sliding.


1986 ◽  
Vol 64 (7) ◽  
pp. 763-767 ◽  
Author(s):  
I. R. Dagg ◽  
A. Anderson ◽  
S. Yan ◽  
W. Smith ◽  
C. G. Joslin ◽  
...  

A recently developed theory for collision-induced absorption in methane is compared with experimental results over a wider spectral range and at lower temperatures than previously reported. The present experimental results covering the frequency range below 400 cm−1 exhibit good agreement with other recently published data. The theory shows excellent agreement with experiment in the low-frequency region below approximately 200 cm−1 but underestimates the experimental data somewhat at higher frequencies. Possible theoretical reasons for this discrepancy are given. The theory represents a simple method of obtaining a good estimate of the collision-induced absorption spectra of methane in this frequency region and for extrapolating to lower temperatures for which experimentation is not feasible. In addition, the moments α1 and γ1are compared with earlier determinations and indicate good agreement with the previously obtained values for the octupole and hexadecapole moments of methane.


1987 ◽  
Vol 109 (3) ◽  
pp. 197-202 ◽  
Author(s):  
M. Acar ◽  
R. K. Turton ◽  
G. R. Wray

The air-jet texturing process, a purely mechanical means of texturing continuous filament yarns, is described. Industrial texturing nozzles are reviewed and categorized in two groups, either as converging-diverging or cylindrical type nozzles. A mathematical model is developed for the complex airflow in cylindrical type texturing nozzles, and experimental data obtained from various nozzles verify the flow predicted by this model. The mathematical model is also shown to be in good agreement with the data obtained from a modified experimental nozzle, which has a trumpet shaped diverging exit. Further experimental work with a scaled-up model of a typical industrial texturing nozzle is also reported.


2014 ◽  
Vol 971-973 ◽  
pp. 811-815 ◽  
Author(s):  
Tian Fei Ma ◽  
Qian Chen

The pneumatic ABS pressure regulator of commercial vehicle is submitted to study in this paper. Its structure and operating principle are introduced, and a simulation model based on the AMESim is established on the basis of its mathematical model. Then the static characteristics and dynamic characteristics are researched by simulation model and the characteristic curves are compared with experimental data for the verification. The results show that simulation curves and experiment curves are in good agreement, which can be tolerated in the engineering.


Author(s):  
S K Padhy

In this paper the experiments conducted for the measurement of oil flow in the rotary compressor are described. The experimental data are compared against the theoretical prediction from the mathematical model developed (1) and a good agreement is found. In addition, experimental data from previously published literature are also used to verify the mathematical model. A sensitivity study is carried out to predict the behaviour of the rotary compressor for the oil flow at different conditions and with different dimensions.


2021 ◽  
Vol 263 (2) ◽  
pp. 4511-4519
Author(s):  
Incheol Lee ◽  
Yingzhe Zhang ◽  
Dakai Lin

To investigate the impact of installation on jet noise from modern high-bypass-ratio turbofan engines, a model-scale noise experiment with a jet propulsion system and a fuselage model in scale was conducted in the anechoic wind tunnel of ONERA, CEPRA 19. Two area ratios (an area of the secondary nozzle over an area of the primary nozzle), 5 and 7, and various airframe configurations such as wing positions relative to the tip of the engine nacelle and flap angles, were considered. Based on the analysis of experimental data, an empirical model for the prediction of engine installation noise was proposed. The model comprises two components: one is the interaction be-tween the jet and the pressure side of the wing, and the other is the interaction between the jet and the flap tip. The interaction between the jet and the pressure side of the wing contributes to the noise at the low frequencies (≤ 1.5 kHz), and the interaction between the jet and the flap tip con-tributes to the noise at the high frequencies. The proposed model showed a good agreement with the experimental data.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
E. A. Mousa

Numerical prediction is performed on the reduction of wüstite under simulated blast furnace conditions using factorial design approach. Wüstite sinter samples with different basicity (0.5, 1.0, and 2.0) are reduced with a gas mixture consisting of 30% CO, 10% H2, 5% CO2, and 55% N2 at 950–1100°C. In all cases, the reduction degree of wüstite increased with basicity and temperature. A 23 factorial design is applied to derive a regression model based on the experimental data of acidic (CaO/SiO2 = 0.5) and basic (CaO/SiO2 = 2.0) wüstite which is reduced at 950°C and 1100°C for 5 and 35 min. The developed mathematical model is applied to predict the reduction degree of wüstite at different basicity (0.5, 1.0, and 2.0), interval of time (5–35 min), and temperatures (950, 1000, 1050°C, and 1100°C). In general, the results of the driven models are found to be in good agreement with the experimental data of reduction of wüstite in many cases. The MATLAB program is used to carry out the required calculations.


2021 ◽  
Vol 257 ◽  
pp. 03047
Author(s):  
Zhehua Du ◽  
Xin Lin

A simple mathematical model is proposed to account for emissions of Volatile Organic Compounds (VOCs) from three-layer building materials. The model considers both the diffusion within three layer building materials and the mass transfer resistance through the air boundary layer. A general solution method based on Laplace transform is presented. Compared to other models capable of accounting for emissions of VOCs from multi layer building materials, the present model is fully analytical instead of being numerical. The present model was validated by the experimental data from the specially designed test. The results indicated that there was a good agreement between the model predictions and the experimental data. It can also be seen from calculation that model ignoring the boundary layer resistance cannot fully reflect the real situation.


1968 ◽  
Vol 90 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E. B. Qvale ◽  
J. L. Smith

A mathematical model of Stirling-type engines has been developed. The complexity of the problem has been reduced by analyzing the various components of the engine (heat exchangers, regenerator, and cylinders) separately for cyclically steady conditions, and by selecting pressure, temperature, and mass as the independent variables. The required piston displacements are a computed result. Losses due to flow friction, piston blow-by, and finite heat transfer rates have been accounted for by applying correction factors to the basic performance which is computed without these effects. The theory has been carried out for engines, but it is equally valid for refrigerators with minor modification. The theory is in good agreement with available experimental data.


2016 ◽  
Vol 683 ◽  
pp. 533-539 ◽  
Author(s):  
Aleksey A. Orlov ◽  
Alexandr F. Tsimbalyuk ◽  
Roman V. Malyugin

A non-stationary mathematical model of desublimation UF6 in vertical tanks considers the movement of gaseous uranium hexafluoride contains in the article. Results of calculation of time dependence of the linear velocity desublimation, the thickness of the resulting layer of the solid phase, the temperature distribution in the tank wall - desublimation layer, filling dynamics of vertical tank B-12 by solid UF6 are presented. Calculations have shown that the 70% of B-12 tank is filled desublimation UF6 by 250 hours, which is in good agreement with the experimental data


Sign in / Sign up

Export Citation Format

Share Document