Lubrication Analysis of a Rolling Piston Rotary Compressor: Part 2: Experimental Validation and Results

Author(s):  
S K Padhy

In this paper the experiments conducted for the measurement of oil flow in the rotary compressor are described. The experimental data are compared against the theoretical prediction from the mathematical model developed (1) and a good agreement is found. In addition, experimental data from previously published literature are also used to verify the mathematical model. A sensitivity study is carried out to predict the behaviour of the rotary compressor for the oil flow at different conditions and with different dimensions.

Author(s):  
R. Caracciolo ◽  
A. Gasparetto ◽  
A. Trevisani

Abstract This paper presents an experimental validation of a finite element approach for the dynamic analysis of flexible multi-body planar mechanisms. The mathematical model employed accounts for mechanism geometric and inertial non-linearities and considers coupling effects among rigid-body and elastic motion. A flexible five-bar linkage actuated by two electric motors is employed as a test case. Experimentally determined link absolute deformations are compared with the numerical results obtained simulating the system dynamic behavior through the mathematical model. The experimental and numerical results are in good agreement especially after the very first transient period.


1987 ◽  
Vol 109 (3) ◽  
pp. 197-202 ◽  
Author(s):  
M. Acar ◽  
R. K. Turton ◽  
G. R. Wray

The air-jet texturing process, a purely mechanical means of texturing continuous filament yarns, is described. Industrial texturing nozzles are reviewed and categorized in two groups, either as converging-diverging or cylindrical type nozzles. A mathematical model is developed for the complex airflow in cylindrical type texturing nozzles, and experimental data obtained from various nozzles verify the flow predicted by this model. The mathematical model is also shown to be in good agreement with the data obtained from a modified experimental nozzle, which has a trumpet shaped diverging exit. Further experimental work with a scaled-up model of a typical industrial texturing nozzle is also reported.


Author(s):  
Sisir K. Padhy

Abstract This paper describes the experimental validation of the rotary compressor dynamics model [1]. Roller velocity is measured using video technology and a very good agreement is found with the theoretical results. A sensitivity study using different variables that affect the compressor dynamics is also carried out. It is found that the coefficient of friction at the vane and roller plays an important role in roller velocity. The dynamics of roller is influenced by the clearances, the roller radius, the vane radius, eccentricity of the shaft, the frictional behavior between the roller ends and the bearing plates, the discharge pressure of the compressor as well as the moment of inertia of roller.


Author(s):  
Sisir K. Padhy

Abstract The rotary compressor has been used in room air conditioners as well as in refrigerators for many years. Although a number of published papers has been reported on rotary compressor, in the area of dynamics only a few are found. In addition only one paper describes experimental validation with some agreement with theoretical results. Again the effect of various operating pressures and temperatures, rotational speed of shaft etc. is not fully covered in any published literature. The present paper analyzes the rotary compressor dynamics in detail. The mathematical model, the solution procedure using Runge-Kutta method, and the bearing dynamics are described. The second part of this papers describes the experimental validation and sensitivity study using different variables that affect the compressor dynamics.


Author(s):  
Jurij Avsec ◽  
Maks Oblak

The paper features the mathematical model representing the analytical calculation of thermal conductivity for nanofluids. The mathematical model was developed on the basis of statistical nano-mechanics. We have made the detailed analysis of the influence of temperature dependence on thermal conductivity for nanofluids. On this basis are taken into account the influences such as formation of nanolayer around nanoparticles, the Brown motion of solid nanoparticles and influence of diffusive-ballistic heat transport. The analytical results obtained by statistical mechanics are compared with the experimental data and they show relatively good agreement.


1999 ◽  
Author(s):  
Mahmut D. Mat ◽  
Yüksel Kaplan ◽  
Olusegun J. Ilegbusi

Abstract Subcooled boiling of water in a vertical pipe is numerically investigated. The mathematical model involves solution of transport equations for vapor and liquid phase separately. Turbulence model considers the turbulence production and dissipation by the motion of the bubbles. The radial and axial void fractions, temperature and velocity profiles in the pipe are calculated. The estimated results are compared to experimental data available in the literature. It is found that while present study satisfactorily agrees with experimental data in the literature, it improves the prediction at lower void fractions.


Author(s):  
A I Ryazanov

This paper describes the aerohydrodvnamics of processes in chambers of Gorlov's hydro-pneumatic power system. The mathematical model is developed to determine the main parameters of the processes: water and air velocities, air pressure in the chamber, the periods of time required to fill and empty the chambers and the output of energy during the cycle. The results obtained are in agreement with experimental data and model tests.


2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


Author(s):  
W M G Malalasekera ◽  
F Lockwood

A mathematical model has been applied to simulate model experiments of the 1987 King's Cross underground fire by the Department of Health and Safety Executive. The predicted growth of the fire is compared with the experimental data and in particular the predicted and measured times to ‘flashover’ are compared. The comparisons show exceptional agreement which, in part, may be fortuitous due to the need to facilitate the prediction of the early stages of the growth with the aid of an experimentally estimated fire strength. The good agreement nonetheless is also due to the full description of the radiation transfer which is a feature of the mathematical model. It is concluded that the flashover phenomenon that occurred at King's Cross was thermal radiation driven and that future research should be devoted to modelling the details of fire spread across a combustible surface.


2015 ◽  
Vol 14 (2) ◽  
pp. 90 ◽  
Author(s):  
K. L. M. Dos Passos ◽  
B. M. Viegas ◽  
E. N. Macêdo ◽  
J. A. S. Souza ◽  
E. M. Magalhães

The use of the waste of the Bayer process, red mud, is due to its chemical and mineralogical composition that shows a material rich in oxides of iron, titanium and aluminum. Some studies conducted show that this waste can be applied as a source of alternative raw material for concentration and subsequent recovery of titanium compounds from an iron leaching process, which is present in higher amounts, about 30% by weight. To obtain a greater understanding about the leaching kinetics, the information of the kinetic data of this process is very important. In this context, the main objective of this work is the development of a mathematical model that is able to fit the experimental data (conversion / extraction iron, titanium and aluminum) of the leaching process by which is possible to obtain the main kinetic parameters such as the activation energy and the velocity of chemical reactions as well as the controlling step of the process. The development of the mathematical model was based on the model of core decreasing. The obtained model system of ordinary differential equations was able to fit the experimental data obtained from the leaching process, enabling the determination of the controlling step, the rate constants and the activation energies of the leaching process.


Sign in / Sign up

Export Citation Format

Share Document