Bioactivity Behavior of YSZ-Al2O3/10HAP Bioceramics Composites in Simulated Body Fluid

2014 ◽  
Vol 980 ◽  
pp. 13-17
Author(s):  
M.R.N. Liyana ◽  
Nur Maizatul Shima Adzali ◽  
M.Z.M. Zamzuri

Yttria-stabilized zirconia and alumina made significant contributions to the development of health care industry, specifically as orthopedic and dental materials. Both bioceramics are nearly inert ceramics, as they do not allow the interfacial bonding with tissue. Thus, it is necessary to provide bioactive surrounding as to elicit a specific biological response at the interface of material. This research reported the microstructure and bioactivity behavior of YSZ-Al2O3/10HAP with 30 wt. % and 60 wt. % of YSZ content. Powders were mixed before being compacted at 225MPa using uni-axial press machine. The composites were sintered at 1200 ̊C with heating rate of 10 ̊C/min. In-vitro bioactivity behavior of the composites were evaluated by immersing the composites into simulated body fluid. Results from x-ray diffraction pattern, confirmed the phase formation of apatite by the presence of Ca2P2O7, and CaO that might be useful on implant cell interaction in a body environment. The apatite formation was observed on the surfaces of the composites by SEM only after 9 days of immersion and subsequently apatite nucleation increased with prolonging immersion time. The dynamic changes in pH, between ion concentration in SBF and bioceramics surfaces correspondedwith an immersion time. Up to 30 days of immersion, the pH value of SBF stabilized approximately around pH 7.4-7.6, similar to the human blood plasma. Formation of apatite on composites surface of prepared YSZ-Al2O3/10HAP bioceramics may contribute to the improved biocompatibility and osteoconductivity.

2007 ◽  
Vol 14 (06) ◽  
pp. 1073-1078 ◽  
Author(s):  
JIN-LING SUI ◽  
WU BO ◽  
ZHOU HAI ◽  
NING CAO ◽  
MU-SEN LI

Two types of hydroxyapatite (HA) coatings onto carbon/carbon composite ( C / C composites) substrates, deposited by plasma spraying technique, were immersed in a simulated body fluid (SBF) in order to determine their behavior in conditions similar to the human blood plasma. Calcium ion concentration, pH value, microstructure, and phase compositions were analyzed. Results demonstrated that both the crystal Ca – P phases or the amorphous HA do dissolve slightly, and the dissolution of CaO phases in SBF was evident after 1 day of soaking. The calcium-ion concentration was decreased and the pH value of SBF was increased with the increasing of the immersing time. The precipitation was mainly composed of HA, which was verified by X-ray diffraction (XRD) and electron-probe microanalyzer.


2013 ◽  
Vol 11 (10) ◽  
pp. 1583-1598 ◽  
Author(s):  
Melinda Czikó ◽  
Erzsébet-Sára Bogya ◽  
Réka Barabás ◽  
Liliana Bizo ◽  
Răzvan Stefan

AbstractHydroxyapatite composites are the main biomaterials used for metal implant coatings. Their in vitro study is very important. That is why their behavior was monitored in simulated body fluid (SBF), which is a solution with ion concentrations and pH value similar to those of human blood plasma. Silica, chitosan and gelatin-doped hydroxyapatite-based biomaterials were studied in SBF; the samples were characterized pre-, during and post-SBF immersion using infra-red, scanning and transmission electron spectroscopy and X-ray diffraction methods. The solubility of materials in SBF was determined, and the variation of Ca2+ and phosphorus concentration was also recorded during SBF experiments. The results were compared and their in vitro biological activity was determined.


2014 ◽  
Vol 604 ◽  
pp. 196-199 ◽  
Author(s):  
Inga Narkevica ◽  
Jurijs Ozolins ◽  
Liga Berzina-Cimdina

Surface properties of a material play a significant role in manipulating biological response of living body to artificial materials. The aim of this work was put on bioactivity assessment of TiO2 ceramic after thermal treatment and further surface activation with UV-light. The in vitro apatite-forming ability was examined by soaking the samples into the simulated body fluid for several days. The research shows that nanostructural surface and UV irradiation accelerates formation of apatite on TiO2 pellets.


2007 ◽  
Vol 280-283 ◽  
pp. 1581-1584
Author(s):  
Chun Lin Deng ◽  
Ji Yong Chen ◽  
Yang Leng ◽  
Xin Long Wang ◽  
Yao Wu ◽  
...  

Porous tricalcium phosphate ceramics were immersed in static and dynamic revised simulated body fluid (RSBF) at 37°C. Morphology, composition and phase of precipitates on TCP were identified by SEM, FTIR and TEM methods. FTIR and TEM results indicated the deposits on the inner pore walls of TCP were OCP, and SEM results implied that the deposited way of precipitates in static system was different from that in dynamic system.


2015 ◽  
Vol 6 (1) ◽  
pp. 33 ◽  
Author(s):  
L. J. Reyes Jaimes ◽  
H. A. González Romero ◽  
A. Sandoval Amadora ◽  
D. Y. Peña Ballesteros ◽  
H. A. Estupiñán Durán

ResumenSe evaluó el efecto del pH de fluido corporal simulado en la formación de apatitas y en la degradación de superficies de la aleación Ti6Al4V recubiertas con Fosfato de Calcio mediante la técnica de lectrodeposición catódica. Como variables de estudio se tomaron el pH del fluido corporal simulado y el tiempo de inmersión de los recubrimientos. Mediante microscopia electrónica de barrido, espectroscopia de energía dispersiva, difracción de rayos X y absorción atómica se pudo corroborar la formación de apatitas, y la degradación de los recubrimientos se evaluó mediante Espectroscopia de impedancia electroquímica y curvas de polarización potenciodinámicas. Los resultados obtenidos muestran que los recubrimientos tenían altas concentraciones de Fluorapatita (Ca5(PO4)3F) y que su formación se ve favorecida a medida que el pH del fluido corporal simulado y el tiempo de inmersión aumenta. Por otra parte, se obtuvo que las muestras evaluadas a pH de 7,2 son menos estables termodinámicamente, sin embargo, las evaluadas a 7,6 presentan una superficie más activa, por lo que se obtiene una mayor velocidad de degradación. AbstractThe pH eect of a Simulated Body Fluid in the apatite formation and the degradation of the Ti6Al4V alloy surfaces, coated by calcium phosphate obtained through cathodic electrodeposition was evaluated. The simulated body fluid pH and the coating immersion time were taken as variables. The formation of apatite was corroborated by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X Ray Diraction and Atomic Absorption Techniques. The coating degradation was assessed by the Electrochemical Impedance Spectroscopy and the Potential Dynamic Polarization Curves. The results have shown that the coatings had high concentrations of fluorapatite (Ca5(PO4)3F) and its formation was favored as the simulated body fluid pH and the immersion time increases. Moreover, it was found that the coatings samples evaluated at pH 7.2 were less thermodynamically steady, however, the evaluated coating at pH 7.6 exhibited a more active surface, so that a higher rate of degradation is obtained.


Author(s):  
Alaa A. Mohammed ◽  
Jawad K. Oleiwi

Polyetheretherketone is a semi-crystalline thermoplastic polymer, that so with heat treatments, it is possible to get different properties which are very important for the material performance. Heat treatment is a broadly utilized to develop the semi-crystalline polymers properties. In the present investigation, annealing of polyetheretherketone (PEEK) was carried out at temperatures above its glass transition temperature (Tg) to study its effects upon the biological conduct of the control and PEEK ternary composites. The bioactivity of the specimens was evaluated by investigating the apatite formation after immersion for different periods in a simulated body fluid (SBF). The biocompatibility of specimens was assessed by MTT assay. Additionally, the antibacterial property of the specimens versus S. aureus was observed with the optical density methods. The results manifested that the formation of hydroxyapatite was obviously observed on specimens after immersion for (7 and 14 days) in the simulated body fluid (SBF). Otherwise, the results of MTT assay recorded the PEEK specimens that excited the activity of fibroblasts, and therefore a high cytocompatibility was noticed and the specimens revealed antibacterial properties against S. aureus. So, the results of the bioactivity, biocompatibility and antibacterial tests in vitro demonstrated that the heat treatment enhanced biological behavior.


2014 ◽  
Vol 631 ◽  
pp. 390-394 ◽  
Author(s):  
S.B. Cho ◽  
G.J. Yoon ◽  
E.M. An ◽  
Y.J. Kim ◽  
T.N. Kim ◽  
...  

We reported the apatite-forming ability of 30CaO∙70SiO2 scaffolds with 0~100 ppm Ag ions by soaking in simulated body fluid (SBF). This study was to evaluate the effects of the concentrations of Ag ions in the 30CaO∙70SiO2 gels on in-vitro biocompatibility of osteoblasts (MC3T3). After seeding cells on the surface of Ag-30CaO∙70SiO2 gels scaffold, cellular behaviors were evaluated by an assay of cell counting kit-8. Cytotoxicity of the scaffold samples was evaluated by employing the extract solutions of the scaffold samples by the assays of neutral red, MTT and BrdU. In addition, live & dead assay was performed by using a gel covering method, which the scaffolds have been directly contacted with the incubated cells on the well plate. According to the results of CCK-8 assay, the optical density value of the absorbance of the resulting solution decreased as the concentration of Ag ions in the scaffolds increased. Moreover, their cell viability was measured to be less than 50% at the Ag concentrations of 50 ppm or more, and dead cells were observed in the experiment results of both the cytotoxicity and gel covering tests. From these experimental results, we concluded that the Ag-30CaO∙70SiO2 scaffolds with less than 50 ppm Ag ion concentration were considered as biocompatible.


2018 ◽  
Vol 9 ◽  
pp. 204173141877417 ◽  
Author(s):  
Shiva Kamini Divakarla ◽  
Seiji Yamaguchi ◽  
Tadashi Kokubo ◽  
Dong-Wook Han ◽  
Jae Ho Lee ◽  
...  

The leading reason for implant revision surgery globally is lack of implant integration with surrounding bone. A new titanium alloy GUMMETAL® (Ti59Nb36Ta2Zr3O0.3) is currently used in biomedical devices and has a Young’s modulus that is better matched to bone. The surface was subject to NaOH, CaCl2, heat and water treatment (BioGum) after which the surfaces were evaluated using atomic force microscope, scanning electron microscope, X-ray diffractometer and elemental analysis using energy dispersive X-ray. To demonstrate enhanced bone bonding ability and cytocompatibility, apatite formation in simulated body fluid and in vitro stem cell attachment, proliferation and cytoskeleton organisation were examined. The formation of a ~200 nm nanoscale needle-like calcium titanate network on the surface following treatment was revealed and upon soaking in simulated body fluid, the formation of a ~5 µm layer of apatite. Metabolic activity of rat bone marrow stem cells on BioGum was increased in comparison to control and the cell number appeared greater, with more elongated morphology as early as 2 h post-seeding. This positions the modification as a simple and potentially universal technology for the improvement of implant integration.


2007 ◽  
Vol 330-332 ◽  
pp. 483-486
Author(s):  
Yun Qing Kang ◽  
Guang Fu Yin ◽  
Ke Feng Wang ◽  
Lin Luo ◽  
Li Liao ◽  
...  

The ability of apatite to form on the surface of biomaterials in simulated body fluid (SBF) has been widely used to predict the bone-bonding ability of bioceramic and bioceramic/polymer composites in vivo. Porous β-tricalcium phosphate/poly(L-lactic acid) (β-TCP/PLLA) composite scaffold was synthesized by new method. The ability of inducing calcium phosphate (Ca-P) formation was compared in static simulated body fluid(sSBF) and dynamic simulated body fluid (dSBF). The Ca-P morphology and crystal structures were identified using SEM, X-ray diffraction and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the typical features of bone-like apatite formation on the surface and the inner pore wall of β-TCP/PLLA. Ca-P formation on scaffold surfaces in dSBF occurred slower than in sSBF and was more difficult with increasing flow rate of dSBF. The ability of apatite to form on β-TCP/PLLA was enhanced by effect of each other that has different degradable mechanism. Porous β-TCP/PLLA composite scaffold indicates good ability of Ca-P formation in vitro.


2005 ◽  
Vol 288-289 ◽  
pp. 171-174
Author(s):  
Hui Wang ◽  
Bang Cheng Yang ◽  
Qi Feng Yu ◽  
Dayi Wu ◽  
Xing Dong Zhang

Titania ceramics is lack of bone-bonding ability even if it has excellent biocompatibility. Recently, it is even found that the nanophase titania ceramics could enhance the proliferation of osteoblasts. If the bone-bonding ability of this material is improved, it would be a potential bone replacement material. Bioactive glass-ceramic (BGC) is provided with the best bioactivity in biomaterials. In this study, the apatite formation ability and the mechanic properties of titania ceramic were investigated by the accession of BGC. Four samples: TiO2 ceramic, TiO2 +10%BGC, TiO2 +20%BGC and BGC were prepared respectively. These ceramics were exposed to a simulated body fluid (SBF) for 7, 14 and 21d. Scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX) and thin film X-ray diffraction (TF-XRD) results showed that the apatite formation of the ceramics was improved by adding BGC into nanophase titania ceramic. The mechanical analysis showed the biomechanical compatibility was also improved by adding BGC into nanophase titania ceramic.


Sign in / Sign up

Export Citation Format

Share Document