Surface Modification of Titanium Alloys Using Alumina Particles Blasting for Biomedical Applications

2014 ◽  
Vol 983 ◽  
pp. 135-140 ◽  
Author(s):  
Suparat Udomlertpreecha ◽  
Prasit Pavasant ◽  
Boonrat Lohwongwatana

Ti-based bulk metallic glass (BMG) is a new class of titanium alloys that exhibits excellent properties for biomedical applications. They have high strength, good corrosion resistance, low elastic modulus and satisfactory biocompatibility. Therefore, Ti-based BMG is an excellent alternative material to be used in biomedical application. Titanium alloy with a nominal composition of the Ti40Zr10Co36Pd14 was synthesized by replacing Cu with Co in a better-known bulk glass forming composition. Coin-shape samples with a diameter of 15 mm and thickness of 1 mm were prepared by arc-melting and casting into copper mold. The coin-shape samples were polished, then followed by blasting with 50 μm and 250 μm average particle sizes of alumina. Alumina blasting caused plastic deformation at the surface and induced change in surface roughness. The larger size of alumina particle, the higher the Ra, Rq and Rt with significant difference. Some abrasive alumina particles were found to be embedded onto the blasted surface. The blasted Ti40Zr10Co36Pd14 sample showed lower roughness values than those blasted Ti-6Al-4V samples. This may be because of the higher hardness values of Ti40Zr10Co36Pd14 sample, when compared to the softer Ti-6Al-4V samples. The contact angle measurement which demonstrated wettability of all samples did not show significant difference in a tested range of Ra (from 40 to 428 nm).

JOM ◽  
2005 ◽  
Vol 57 (7) ◽  
pp. 5-5 ◽  
Author(s):  
J. I. Qazi ◽  
B. Marquardt ◽  
H. J. Rack

Author(s):  
Paniz Memarian ◽  
Atefeh Solouk ◽  
Zohre Bagher ◽  
Somaye Akbari ◽  
Masoumeh Haghbin Nazarpak

Abstract The modification of poly (l-lactic acid) (PLLA) electrospun nanofibrous scaffolds was carried out by blending with second-generation poly amidoamine (PAMAM) for enhancement of their ionic conductivity. The samples containing PLLA and various amounts of PAMAM (1%, 3%, 5%, and 7% by wt.) were fabricated by electrospinning techniques. The electrospun fibers were characterized using scanning electron microscopy (SEM), porosity, Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry, contact angle measurement, water uptake measurement, mechanical properties, and electrical properties. Furthermore, in vitro degradation study and cell viability assay were investigated in biomaterial applications. Creating amide groups through aminolysis reaction was confirmed by FTIR analysis successfully. The results reveal that adding PAMAM caused an increase in fiber diameter, crystallinity percentage, hydrophilicity, water absorption, elongation-at-break, and OE-mesenchymal stem cell viability. It is worth mentioning that this is the first report investigating the conductivity of PLLA/PAMAM nanofiber. The results revealed that by increasing the amount of PAMAM, the ionic conductivity of scaffolds was enhanced by about nine times. Moreover, the outcomes indicated that the presence of PAMAM could improve the limitations of PLLA like hydrophobicity, lack of active group, and poor cell adhesion.


2019 ◽  
Vol 9 (7) ◽  
pp. 922-928
Author(s):  
Haiguang Zhang ◽  
BaoQuan Qi ◽  
Qingxi Hu ◽  
Biao Yan ◽  
Dali Liu ◽  
...  

Carbon fibers are excellent materials for engineering biomedical materials and devices owing to their functional properties of low weight, high strength, high chemical and thermal stability, and blood and cell compatibility. Recent studies have demonstrated that the carbon fibers could be used as a scaffolding system for bone repair and regenerative application. However, carbon fiber-based composite products lack the long-term retention of their biological property upon implantation, which greatly affects their wider biomedical applications. In this study, design and fabrication of carbon fibers composite scaffolds using a fast 3D printing technology has been successfully realized, which provides a new direction for the biomedical application of carbon fiber composite materials.


JOM ◽  
2004 ◽  
Vol 56 (11) ◽  
pp. 49-51 ◽  
Author(s):  
J. I. Qazi ◽  
H. J. Rack ◽  
B. Marquardt

2018 ◽  
Vol 69 (5) ◽  
pp. 1213-1215
Author(s):  
Maria Minodora Marin ◽  
Madalina Ignat ◽  
Mihaela Violeta Ghica ◽  
Madalina Albu Kaya ◽  
Cristina Dinu Pirvu ◽  
...  

The pain management is therefore of paramount importance and the local anesthetic treatment has to be considered. Thus, the purpose of this study was to design and characterize some collagen microcapsules incorporating an anesthetic. The collagen hydrolysate was prepared by spray-drying forming micro sizes spheres (microcapsules) which were loaded with 1% lidocaine (anesthetic) and cross-linked with different cross-linking agent: tannic acid, glutaraldehyde and genipin, in order to obtain solution for tooth pain. The wetting behavior of dried microcapsules powders was determined by contact angle measurement. The microcapsule solutions were characterized by dynamic light scattering (DLS) and in vitro release of lidocaine was investigated. These therapeutically products, based on collagen microcapsules, a local anesthetic and three cross-linking agents, could have potential biomedical application in tooth pain healing treatment.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Siyi Min ◽  
Shijie Li ◽  
Zhouyang Zhu ◽  
Wei Li ◽  
Xin Tang ◽  
...  

AbstractWe report a large-scale surface with continuously varying wettability induced by ordered gradient nanostructures. The gradient pattern is generated from nonuniform interference lithography by utilizing the Gaussian-shaped intensity distribution of two coherent laser beams. We also develop a facile fabrication method to directly transfer a photoresist pattern into an ultraviolet (UV)-cured high-strength replication molding material, which eliminates the need for high-cost reactive ion etching and e-beam evaporation during the mold fabrication process. This facile mold is then used for the reproducible production of surfaces with gradient wettability using thermal-nanoimprint lithography (NIL). In addition, the wetting behavior of water droplets on the surface with the gradient nanostructures and therefore gradient wettability is investigated. A hybrid wetting model is proposed and theoretically captures the contact angle measurement results, shedding light on the wetting behavior of a liquid on structures patterned at the nanoscale.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2020 ◽  
Vol 27 (28) ◽  
pp. 4622-4646 ◽  
Author(s):  
Huayu Liu ◽  
Kun Liu ◽  
Xiao Han ◽  
Hongxiang Xie ◽  
Chuanling Si ◽  
...  

Background: Cellulose Nanofibrils (CNFs) are natural nanomaterials with nanometer dimensions. Compared with ordinary cellulose, CNFs own good mechanical properties, large specific surface areas, high Young's modulus, strong hydrophilicity and other distinguishing characteristics, which make them widely used in many fields. This review aims to introduce the preparation of CNFs-based hydrogels and their recent biomedical application advances. Methods: By searching the recent literatures, we have summarized the preparation methods of CNFs, including mechanical methods and chemical mechanical methods, and also introduced the fabrication methods of CNFs-based hydrogels, including CNFs cross-linked with metal ion and with polymers. In addition, we have summarized the biomedical applications of CNFs-based hydrogels, including scaffold materials and wound dressings. Results: CNFs-based hydrogels are new types of materials that are non-toxic and display a certain mechanical strength. In the tissue scaffold application, they can provide a micro-environment for the damaged tissue to repair and regenerate it. In wound dressing applications, it can fit the wound surface and protect the wound from the external environment, thereby effectively promoting the healing of skin tissue. Conclusion: By summarizing the preparation and application of CNFs-based hydrogels, we have analyzed and forecasted their development trends. At present, the research of CNFs-based hydrogels is still in the laboratory stage. It needs further exploration to be applied in practice. The development of medical hydrogels with high mechanical properties and biocompatibility still poses significant challenges.


Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Orlando Donoso-González ◽  
Lucas Lodeiro ◽  
Álvaro E. Aliaga ◽  
Miguel A. Laguna-Bercero ◽  
Soledad Bollo ◽  
...  

Gold nanostars (AuNSs) exhibit modulated plasmon resonance and have a high SERS enhancement factor. However, their low colloidal stability limits their biomedical application as a nanomaterial. Cationic β-cyclodextrin-based polymer (CCD/P) has low cytotoxicity, can load and transport drugs more efficiently than the corresponding monomeric form, and has an appropriate cationic group to stabilize gold nanoparticles. In this work, we functionalized AuNSs with CCD/P to load phenylethylamine (PhEA) and piperine (PIP) and evaluated SERS-based applications of the products. PhEA and PIP were included in the polymer and used to functionalize AuNSs, forming a new AuNS-CCD/P-PhEA-PIP nanosystem. The system was characterized by UV–VIS, IR, and NMR spectroscopy, TGA, SPR, DLS, zeta potential analysis, FE-SEM, and TEM. Additionally, Raman optical activity, SERS analysis and complementary theoretical studies were used for characterization. Minor adjustments increased the colloidal stability of AuNSs. The loading capacity of the CCD/P with PhEA-PIP was 95 ± 7%. The physicochemical parameters of the AuNS-CCD/P-PhEA-PIP system, such as size and Z potential, are suitable for potential biomedical applications Raman and SERS studies were used to monitor PhEA and PIP loading and their preferential orientation upon interaction with the surface of AuNSs. This unique nanomaterial could be used for simultaneous drug loading and SERS-based detection.


Sign in / Sign up

Export Citation Format

Share Document