Preparation and Dielectric Property of Ag/PVDF Composite Film

2014 ◽  
Vol 989-994 ◽  
pp. 242-245 ◽  
Author(s):  
Ya Jun Wang ◽  
Jian Wen Zhai ◽  
Fang Fang Wang ◽  
Chang Gen Feng

Conductive particle fillers could improve the dielectric properties of the polymer matrix. By solvent casting method, different volume fraction of nanosilver particles were added into the PVDF film to prepare Ag/PVDF composite film so as to increase the dielectric properties of the materials. SEM was used to analyze the microstructure of the films. SEM images show that nanoAg filler particles were uniformly distributed throughout the whole matrix of the composite films. Dielectric property tests show that with the increase of nanoAg content, the dielectric constants of the composites increase first and decrease later while the dielectric losses decrease first and increase later. In the case of the optimal 17vol% Ag content, the dielectric constant of the composite film is the highest (14.5 at 100 Hz) with lower dielectric loss, and the energy storage density is relatively high (0.340 J·cm−3).

2014 ◽  
Vol 1035 ◽  
pp. 417-421 ◽  
Author(s):  
Jian Wen Zhai ◽  
Ya Jun Wang ◽  
Jian Lou Deng ◽  
Chang Gen Feng

nanoand micro size Cu were employed separately and investigated comparatively. Different volume fraction of Cu was added into PVDF film in order to investigate the content of filler effect on the dielectric properties of polymer composites. XRD and SEM were used to analyze the crystalline phase and microstructure of the films. The results show that two sizes of Cu have the same peak features, and with the continuous increase of the content of Cu, it disperse better in PVDF. The dielectric constant (ε) of the composite containing 16 vol% micro-CCTO filler is 16 at 100 Hz and room temperature, and its dielectric loss (tanδ) is only 0.15, which is substantially better than others. Besides, for 18 vol% nanoCu/PVDF composite tanδis 0.25 andεis 18 at 100 Hz. Moreover,εand tanδof nanoCu/PVDF composite are both higher than those of micro-Cu/PVDF. Analysis shows that the composites with nanoCu have higher dielectric constants, which is mainly from the interfacial polarization.


2019 ◽  
Vol 26 (07) ◽  
pp. 1850215
Author(s):  
J. Z. LOU ◽  
Y. S. ZHANG ◽  
X. H. DAI ◽  
J. M. SONG ◽  
Z. N. LI ◽  
...  

Pt:MgO composite films are prepared on quartz substrates at room temperature by magnetron sputtering and pulsed laser co-deposition (MSPLC) method, in which the volume ratio of the composite film can be easily controlled by MSPLC method. The sample with Pt volume percents of 40%, 50%, 60% and 70% are prepared, and all the samples are further annealed at 800∘C for 30[Formula: see text]min. Impacts of Pt content on the structural and physical properties have been investigated. Pt (111), (002) and (220) peaks can be observed, and the peak intensity increases with the increase of Pt content, as can be seen from the X-ray diffraction (XRD) pattern. Scanning electron microscope (SEM) results show that the size and density of grains increase and the distance between grains is decreased with the volume fraction increase. Significant absorption peaks were observed for different volume percentage of Pt:MgO composite film. Absorption peaks can be observed at 200, 220, 250 and 275[Formula: see text]nm, corresponding to Pt volume percents of 40%, 50%, 60% and 70%, respectively. The observed red shift of the absorption peak can be mainly related to the increase of Pt grain sizes.


2019 ◽  
Vol 184 (3-4) ◽  
pp. 342-346
Author(s):  
K Waree ◽  
K Pangza ◽  
N Jangsawang ◽  
P Thongbai ◽  
S Buranurak

Abstract The main focus of this study is to investigate the effect of gamma irradiation on the electrical properties of PVDF/BT nanocomposites. A 1.25 MeV gamma-ray was delivered to the composite films with different BaTiO3-volume fraction, ƒBT = 0–0.4, and with different absorbed doses ranged 50–2500 Gy. Dielectric properties of PVDF/BaTiO3 composites under frequencies ranged from 100 Hz to 10 MHz at room temperature were investigated using an impedance analyser. An increase of 28% in the dielectric constant and a decrease of 15% in the loss tangent were observed in the PVDF/BT 40 vol% nanocomposite film under the accumulated dose of 1500 Gy. Scanning electron microscopy provided no significant difference in microscopic structures between non-exposed and gamma-exposed materials. Fourier-transform infra-red spectroscopy provides gamma-induced transition of PVDF-crystalline forms as alpha-PVDF into beta-PVDF/gamma-PVDF which has been reported as one of the main factors affected the change of dielectric constant in polymers. UV–visible spectrophotometry has been observed gamma-induced red shift in the absorption edge of the PVDF/BT 40 vol% nanocomposite film from 400 nm to 420 nm under the accumulated dose of 1500 Gy. However, a blue shift is observed with increase the accumulated dose up to 2000 Gy.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650006 ◽  
Author(s):  
Junli Wang ◽  
Shengli Qi ◽  
Yiyi Sun ◽  
Guofeng Tian ◽  
Dezhen Wu

A three-phase composite film was produced by inserting multi-walled carbon nanotubes (MWCNTs) and BaTiO3 nanoparticles into polyimide (PI). The combination of in-situ polymerization and water-based preparation involved in the experiment ensured fillers’ homogeneous dispersion in the matrix, which led to flexible shape of the composite films. The dielectric properties of composite films as a function of the frequency and the volume fraction of MWCNTs were studied. Such composite film displayed a high dielectric constant (314.07), low dielectric loss and excellent flexibility at 100[Formula: see text]Hz in the neighborhood of percolation threshold (9.02 vol%) owing to the special microcapacitor structure. The experimental results were highly consistent with the power law of percolation theory.


2010 ◽  
Vol 663-665 ◽  
pp. 584-587 ◽  
Author(s):  
Yuan Yuan ◽  
Yu Wang ◽  
Bing Xie

Excellent dielectric property and amazing X-ray Diffraction spectra were found for the novel polyimide films by composing SiO2 hollow spheres with different wt%. The dielectric constants of that from different dianhydrides were ranged of 1.9-3.1 at 1MHz. It was sure that the dielectric constants of the films could be tunable in wider range with different wt% SiO2 hollow sphere as well as different dianhydrides. And in the X-ray Diffraction spectra, some films not only presented wide diffractive peaks of amorphous structures, but also showed sharp crystal peaks at 58.7o and 28.4o. And the Intensity of the sharp crystal peak was dramatically related with the value of dielectric constants. It might be caused by the ordered structure in part of polymer chain. And the structures and properties of the composite thin films were also measured with scanning electron microscope and dynamic themomechanical analysis et al.


2020 ◽  
Vol 31 (5) ◽  
pp. 291-305
Author(s):  
K. Ozeki ◽  
A. Ono

BACKGROUND: Removal of radioactive substances, such as cesium (Cs) and strontium (Sr), has become an emerging issue after the Fukushima Daiichi nuclear power plant disaster. It has been reported that hydroxyapatite (HA) and aluminosilicate composite powders can be used to remove Cs and Sr. However, the film type of these materials for the removal of Cs and Sr has not been reported. OBJECTIVE: The aim of this study was to assess the possibility of using HA, aluminosilicate, and aluminosilicate/HA composites for the removal of Cs and Sr radioactive substances. METHODS: Aluminosilicate films and HA films were fabricated using a sputtering technique with diatomaceous earth and HA targets, respectively. The aluminosilicate film was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). A comb-shaped HA/aluminosilicate composite film was prepared to take advantage of the adsorption properties of the HA and the aluminosilicate films. The Cs and Sr adsorption on these films were also evaluated. RESULTS: In the XRD patterns, the film sputtered from a diatomaceous earth target under 5.0 Pa of Ar pressure showed aluminosilicate peaks (Na1.82(Al2Si3O10) and Al2SiO5) after 8 h of vapor-phase hydrothermal treatment. The film showed higher adsorption of Cs than Sr in Cs and Sr solutions, while the HA film adsorbed far more Sr than Cs. A HA/aluminosilicate composite film was successfully fabricated, and the SEM images showed that the width of the HA region was 230–260 μm, and that of the aluminosilicate region was 170–200 μm. The HA/aluminosilicate composite film showed 84.8 ± 11.5% Cs adsorption and 28.3 ± 1.4% Sr adsorption in a mixed solution of Cs and Sr. CONCLUSION: This study shows the feasibility of using HA films, aluminosilicate films, and HA/aluminosilicate composite films for the removal of radioactive substances such as Cs and Sr.


2012 ◽  
Vol 557-559 ◽  
pp. 704-707
Author(s):  
Hui Juan Chu ◽  
Hong Liang Wei ◽  
Jing Zhu ◽  
Bao Ku Zhu ◽  
You Yi Xu

In order to explore low dielectric polymeric materials, two types of cellular polyimide films with different dianhydride units were prepared by phase inversion method, and their dielectric properties were investigated. Polyimide films with various cellular structures were obtained by controlling coagulation bath compositions and temperatures. The effects of chemical structures, cellular structures on dielectric property of cellular polyimide films were studied. The results showed that all of the cellular polyimide films had lower dielectric constants than the polymer matrix. The dielectric properties were influenced dominantly by the morphologies of the films. Cellular Polyimide films filled with uniform small cellular structures behaved excellent dielectric property compared with those large-pore cellular films. These findings would provide potential application for cellular polyimide films in microelectronic devices.


Geophysics ◽  
1983 ◽  
Vol 48 (3) ◽  
pp. 367-375 ◽  
Author(s):  
James N. Lange

Dielectric properties of saturated, porous geologic materials reflect the large difference in dielectric constant ε of typical saturating fluids such as water (ε = 78) or oil and gas (ε = 1–3). The deconvolution of in‐situ dielectric properties of saturated porous materials into the component parts requires a detailed model of the composite material. Defining aspects of this model in the microwave frequency regime is the primary purpose of this investigation. A model is examined in which the dielectric constant of the composite is equal to the sum of the dielectric constants of the components weighted by the volume fraction occupied by each. That model is compared to measurements at microwave frequencies made on systems consisting of glass beads, quartz, or sand saturated with chlorobenzene, 1,2‐dichloroethane, methanol, or air, and find satisfactory agreement. When water is the saturant an interaction between water and the solid matrix has an important effect on the composite dielectric constant. This interaction is observed to be particularly large for quartz and water and suppresses the composite dielectric constant quite considerably. This interaction is dependent upon the relative surface area per unit volume. An empirical relationship between the surface area and composite dielectric constant is obtained for clean, saturated, unconsolidated reservoirs. The inverse process of determining surface area from in‐situ measurements of the composite dielectric constant may be possible for clean reservoirs of known lithology. In sandstones from cores the dielectric constant is also below the volume fraction model and corrections are needed to evaluate water content.


2003 ◽  
Vol 18 (10) ◽  
pp. 2427-2434 ◽  
Author(s):  
Akinori Kan ◽  
Hirotaka Ogawa ◽  
Kenkichi Mori ◽  
Hitoshi Ohsato ◽  
Yoshinori Andou

The relationship between the microwave dielectric property and crystal structure of Nd2(Ba1−xSrx)ZnO5 solid solutions was investigated using bond valence theorem and first principle method (DV-Xα method). The evaluation of the covalence characteristics of cation–oxygen bonds revealed that as the x value increased, the covalence characteristics of the M–O (M = Ba and Sr) bonds in the MO10 polyhedron decreased while those of the Zn–O(2) bonds in the ZnO4 tetrahedron increased. From the DV-Xα method, it was found that the 3d electrons of the Zn2+ ion are closely related to the strong covalence characteristics of the Zn–O(2) bonds. The dielectric constants were approximately constant over the whole composition; this result is considered to relate to the decrease in the covalence characteristic of the M–O bonds. The quality factors increased from 4915 to 25,836 GHz, and the grain growth of the solid solutions are considered to improve the Q × f values.


Sign in / Sign up

Export Citation Format

Share Document