Multi-UUVs Team Line Formation Control by a Behaviour-Based Method with Fuzzy Logic Adapters

2008 ◽  
Vol 58 ◽  
pp. 165-170 ◽  
Author(s):  
Yan Hou ◽  
Robert Allen

A team of low-cost underwater vehicles could cover an area quickly, e.g. for pollution detection and clearance and benefit from the advantages of formation control, for example it can reduce the cost, increase the robustness and efficiency. In previous work, we have investigated behaviour-based rules with fuzzy logic controlled priority weights for multi-UUVs team cooperation. The goal of this paper is to examine whether the behaviour-based rules can control the line formation of the team when each member is represented by a dynamic manoeuvring model of a real vehicle. Fuzzy logic controllers are applied to update the priority weights for the behavioural rules according to different situations that the vehicles meet in real time. The cooperative mission scenarios with line formation pattern are simulated and the results indicate that the approach can potentially help to maintain the cooperative vehicles in a specified line formation.

Author(s):  
P. V. Manivannan ◽  
A. Ramesh

In this work an Engine Management System (EMS) using a low cost 8-bit microcontroller specifically for the cost sensitive small two-wheeler application was designed and developed. Only the Throttle Position Sensor (TPS) and the cam position sensor (also used for speed measurement) were used. A small capacity 125CC four stroke two-wheeler was converted into a Port Fuel Injected (PFI) engine and was coupled to a fully instrumented Eddy Current Dynamometer. Air-fuel ratio was controlled using the open loop, lookup-table [speed (N) and throttle (α)] based technique. Spark Time was controlled using a proportional / fuzzy logic based close loop control algorithm for the idle speed control to reduce fuel consumption and emissions. Test results show a significant improvement in engine performance over the original carbureted engine, in terms of fuel consumption, emissions and idle speed fluctuations. The Proportional controller resulted in significantly lower speed fluctuations and HC / CO emissions than the fuzzy logic controller. Though the fuzzy logic controller resulted in low cycle by cycle variations than the original carbureted engine, it leads to significantly higher HC levels. The performance fuzzy logic can be improved by modifying the membership function shapes with more engine test data.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241888
Author(s):  
Thanasan Intarakumthornchai ◽  
Ramil Kesvarakul

Chicken egg products increased by 60% worldwide resulting in the farmers or traders egg industry. The double yolk (DY) eggs are priced higher than single yolk (SY) eggs around 35% at the same size. Although, separating DY from SY will increase more revenue but it has to be replaced at the higher cost from skilled labor for sorting. Normally, the separation of double yolk eggs required the expertise person by weigh and shape of egg but it is still high error. The purpose of this research is to detect double-yolked (DY) chicken eggs with weight and ratio of the egg’s size using fuzzy logic and developing a low cost prototype to reduce the cost of separation. The K-means clustering is used for separating DY and SY, firstly. However, the error from this technique is still high as 15.05% because of its hard clustering. Therefore, the intersection zone scattering from using the weight and ratio of the egg’s size to input of DY and SY is taken into consider with fuzzy logic algorithm, to improve the error. The results of errors from fuzzy logic are depended with input membership functions (MF). This research selects triangular MF of weight as low = 65 g, medium = 75 g and high = 85 g, while ratio of the egg is triangular MF as low = 1.30, medium = 1.40 and high = 1.50. This algorithm is not provide the minimum total error but it gives the low error to detect a double yolk while the real egg is SY as 1.43% of total eggs. This algorithm is applied to develop a double yolk egg detection prototype with Mbed platform by a load cell and OpenMV CAM, to measure the weight and ratio of the egg respectively.


Author(s):  
Karan S Belsare ◽  
Gajanan D Patil

A low cost and reliable protection scheme has been designed for a three phase induction motor against unbalance voltages, under voltage, over voltage, short circuit and overheating protection. Taking the cost factor into consideration the design has been proposed using microcontroller Atmega32, MOSFETs, relays, small CTs and PTs. However the sensitivity of the protection scheme has been not compromised. The design has been tested online in the laboratory for small motors and the same can be implemented for larger motors by replacing the i-v converters and relays of suitable ratings.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 392
Author(s):  
Antonio Pulido-Pastor ◽  
Ana Luz Márquez ◽  
José Carlos Guerrero ◽  
Enrique García-Barros ◽  
Raimundo Real

Metapopulation theory considers that the populations of many species are fragmented into patches connected by the migration of individuals through an interterritorial matrix. We applied fuzzy set theory and environmental favorability (F) functions to reveal the metapopulational structure of the 222 butterfly species in the Iberian Peninsula. We used the sets of contiguous grid cells with high favorability (F ≥ 0.8), to identify the favorable patches for each species. We superimposed the known occurrence data to reveal the occupied and empty favorable patches, as unoccupied patches are functional in a metapopulation dynamics analysis. We analyzed the connectivity between patches of each metapopulation by focusing on the territory of intermediate and low favorability for the species (F < 0.8). The friction that each cell opposes to the passage of individuals was computed as 1-F. We used the r.cost function of QGIS to calculate the cost of reaching each cell from a favorable patch. The inverse of the cost was computed as connectivity. Only 126 species can be considered to have a metapopulation structure. These metapopulation structures are part of the dark biodiversity of butterflies because their identification is not evident from the observation of the occurrence data but was revealed using favorability functions.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


Sign in / Sign up

Export Citation Format

Share Document