Low Cost Engine Management System (EMS) for the Cost Sensitive Two-Wheeler Application: Idle Speed and A/F Ratio Control Using PID and Fuzzy Logic Control Algorithms

Author(s):  
P. V. Manivannan ◽  
A. Ramesh

In this work an Engine Management System (EMS) using a low cost 8-bit microcontroller specifically for the cost sensitive small two-wheeler application was designed and developed. Only the Throttle Position Sensor (TPS) and the cam position sensor (also used for speed measurement) were used. A small capacity 125CC four stroke two-wheeler was converted into a Port Fuel Injected (PFI) engine and was coupled to a fully instrumented Eddy Current Dynamometer. Air-fuel ratio was controlled using the open loop, lookup-table [speed (N) and throttle (α)] based technique. Spark Time was controlled using a proportional / fuzzy logic based close loop control algorithm for the idle speed control to reduce fuel consumption and emissions. Test results show a significant improvement in engine performance over the original carbureted engine, in terms of fuel consumption, emissions and idle speed fluctuations. The Proportional controller resulted in significantly lower speed fluctuations and HC / CO emissions than the fuzzy logic controller. Though the fuzzy logic controller resulted in low cycle by cycle variations than the original carbureted engine, it leads to significantly higher HC levels. The performance fuzzy logic can be improved by modifying the membership function shapes with more engine test data.

2006 ◽  
Vol 111 ◽  
pp. 167-170
Author(s):  
M. Shahidul Karim ◽  
Rashed Mustafa

The constantly increasing performance/price ratio of microcontrollers means electronic system can replace more and more electromechanical ones. In design, the goal is not to just replace the solution but also to improve it by adding new functionalities. The paper presents a model of industrial controller having possibility of the classical programming controller, with added elements of the fuzzy logic. Here fuzzy logic offers a technical control strategy that uses elements of everyday language. In this application, it is used to design a control strategy that adapts to the need of individual user. It achieves a higher comfort level and reduces energy consumption. Here we have used a fuzzy method which selects the contractions that best meet the specifications, where human knowledge is involved in a decision making process. With a fuzzy-logic software development system, the entire system, which includes conventional code for signal preprocessing as well as the fuzzy logic system, can be implemented on an industry-standard microcontroller. Using fuzzy logic on such a low-cost platform makes this a possible solution with most AC systems. Each home AC has a sensor that measures room temperature and compares it with the temperature set on the dial. The fuzzy logic controller uses a bimetallic switch and compares the set temperature with room temperature.


Author(s):  
Yalcin Isler ◽  
Savas Sahin ◽  
Orhan Ekren ◽  
Cuneyt Guzelis

This study deals with designing a decentralized multi-input multi-output controller board based on a low-cost microcontroller, which drives both parts of variable-speed scroll compressor and electronic-type expansion valve simultaneously in a chiller system. This study aims to show the applicability of commercial low-cost microcontroller to increase the efficiency of the chiller system, having variable-speed scroll compressor and electronic-type expansion valve with a new electronic card. Moreover, the refrigerant system proposed in this study provides the compactness, mobility, and flexibility, and also a decrease in the controller unit’s budget. The study was tested on a chiller system that consists of an air-cooled condenser, a variable-speed scroll compressor, and a stepper driven electronic-type expansion valve. The R134a was used as a refrigerant fluid and its flow was controlled by electronic-type expansion valve in this setup. Both variable-speed scroll compressor and electronic-type expansion valve were driven by the proposed hardware using either proportional integral derivative or fuzzy logic controller, which defines four distinct controller modes. The experimental results show that fuzzy logic controlled electronic-type expansion valve and proportional integral derivative controlled variable-speed scroll compressor mode give more robustness by considering the response time.


2008 ◽  
Vol 58 ◽  
pp. 165-170 ◽  
Author(s):  
Yan Hou ◽  
Robert Allen

A team of low-cost underwater vehicles could cover an area quickly, e.g. for pollution detection and clearance and benefit from the advantages of formation control, for example it can reduce the cost, increase the robustness and efficiency. In previous work, we have investigated behaviour-based rules with fuzzy logic controlled priority weights for multi-UUVs team cooperation. The goal of this paper is to examine whether the behaviour-based rules can control the line formation of the team when each member is represented by a dynamic manoeuvring model of a real vehicle. Fuzzy logic controllers are applied to update the priority weights for the behavioural rules according to different situations that the vehicles meet in real time. The cooperative mission scenarios with line formation pattern are simulated and the results indicate that the approach can potentially help to maintain the cooperative vehicles in a specified line formation.


2020 ◽  
Vol 10 (2) ◽  
pp. 5419-5422
Author(s):  
K. S. Belkhir

Control of the permanent magnetic direct current PMDC motor is a common practice, hence the importance of the implementation of the PMDC motor speed controller. The results of a fuzzy logic speed controller for the PMDC motor rely on an appropriate base. As the dimension of the rules increases, its difficulty rises which affects computation time and memory requirements. Fuzzy Logic Controller (FLC) can be carried out by a low-cost Arduino Mega which has a small flash memory and a maximum clock speed of 16MHz. It is realized by three membership functions and each was divided into three memberships. The results of the FLC are satisfactory, revealing superior transient and steady-state performance. In addition, the controller is robust to speed mode variations.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 278 ◽  
Author(s):  
Bhavani S ◽  
Shanmugan. S ◽  
Selvaraju P

In this work has been made to predict the effect of several parameters on the productivity to a system by expending fuzzy set technique. A solar cooker has been developed low cost and critically high efficiency produce in Vel Tech Multitech Engineering College at Chennai, Tamilnadu, India. Dissects in thermal performance of cooking system have been produced heat transfer follow in fuzzy logic techniques (Low, Medium, and High). The thermal effect of factor should be developed in fuzzy logic for the system. They should have groups of heat transfer produced in fuzzy logic controller for solar cooker system which had been implemented of system performance discussed. It is to study have induced to give the shortly time for the enhancement of the box solar cooker production.  


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241888
Author(s):  
Thanasan Intarakumthornchai ◽  
Ramil Kesvarakul

Chicken egg products increased by 60% worldwide resulting in the farmers or traders egg industry. The double yolk (DY) eggs are priced higher than single yolk (SY) eggs around 35% at the same size. Although, separating DY from SY will increase more revenue but it has to be replaced at the higher cost from skilled labor for sorting. Normally, the separation of double yolk eggs required the expertise person by weigh and shape of egg but it is still high error. The purpose of this research is to detect double-yolked (DY) chicken eggs with weight and ratio of the egg’s size using fuzzy logic and developing a low cost prototype to reduce the cost of separation. The K-means clustering is used for separating DY and SY, firstly. However, the error from this technique is still high as 15.05% because of its hard clustering. Therefore, the intersection zone scattering from using the weight and ratio of the egg’s size to input of DY and SY is taken into consider with fuzzy logic algorithm, to improve the error. The results of errors from fuzzy logic are depended with input membership functions (MF). This research selects triangular MF of weight as low = 65 g, medium = 75 g and high = 85 g, while ratio of the egg is triangular MF as low = 1.30, medium = 1.40 and high = 1.50. This algorithm is not provide the minimum total error but it gives the low error to detect a double yolk while the real egg is SY as 1.43% of total eggs. This algorithm is applied to develop a double yolk egg detection prototype with Mbed platform by a load cell and OpenMV CAM, to measure the weight and ratio of the egg respectively.


Author(s):  
K. N Chethan ◽  
V Sabarinathan ◽  
R Vivek Ram ◽  
G. T Mahesh

The high-performance plastics usage is increasing in the automobile field because of its advantages over other metals and alloys. Corrosion resistance, light weight, low cost, flexibility in design are the major advantages of plastics above the conventional metallic materials. In this paper a metal version component converted into plastic version in order to increase efficiency, reduce the overall cost of a two-wheeler and to improve the production rate of component. Different types of material such as PP + 15% TALC, PP + 30% GF, PP + 30% TALC, Nylon 6 + 15% GF, Nylon 66 UF, Nylon 6 UF, Nylon 66 + 30% GF, ASA LI941 and ASA LI913 tested for 10,000km road test, vibration test and fitment test. An injection moulding used to produce the component and ‘Mouldx3D’ software was used for mould flow analysis and other simulation. The different parts of injection moulding tool made up of C45, P20 and D2 materials. Among different materials, ASA LI913 was selected since it has better weather resistance than others and the impact strength matched to metal version component. Finally, it was found that the cost of the component made of Plastic considerably less than same component made of metal.


Author(s):  
Md Mamunur Rashid ◽  
Mirza Mustafizur Rahman ◽  
Md Rashidul Islam ◽  
Omar Naser Alwahedy ◽  
Abubakar Abdullahi

Automatic car parking obtains information about available parking space, process it and then place the car at certain position. It is inevitable for the people to update with the growing technology and generally people are facing problems on parking vehicles in parking slot in a city. The Automatic car parking which enables the user to find the nearest parking area and gives availability of parking slots in that respective parking area with the help of LCD display and it mainly focus on reducing the time in finding the parking slots and also it avoids the unnecessary travelling through filled parking slots in a parking area. Thus, it reduces the fuel consumption which in turn reduces carbon footprints in an atmosphere. Sometimes, it is very difficult to find a suitable parking place in parking lot. This research paper has proposed a suitable solution to this problem.


Sign in / Sign up

Export Citation Format

Share Document