The Influence of CVD-FBR Coatings on HCM12 Corrosion Behaviour under Molten Salt Conditions

2009 ◽  
Vol 289-292 ◽  
pp. 469-476
Author(s):  
J. Nieto ◽  
M.P. Hierro ◽  
F.J. Bolívar ◽  
F.J. Pérez

The influence of Al and Al-Si coatings on the corrosion behaviour of HCM12 in molten KCl-ZnCl2 mixture at 650°C in air has been characterized by electrochemical impedance spectroscopy (EIS). Al and Al/Si protective coatings were developed by chemical vapour deposition in fluidized bed reactor (CVD-FBR) at moderate temperature to respect to mechanical properties of substrate. Scanning electron microscopy (SEM) was used to analyse the damage on the HCM12 electrode surface. Al-Si coating was found to be more resistant to the molten chlorides attack than Al coating; and both coatings increased the corrosion resistance of HCM12 in these conditions. The surface composition has been determined by X-ray diffraction (XRD).

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5490
Author(s):  
Nuria Jiménez-Arévalo ◽  
Eduardo Flores ◽  
Alessio Giampietri ◽  
Marco Sbroscia ◽  
Maria Grazia Betti ◽  
...  

Heterostructures formed by ultrathin borocarbonitride (BCN) layers grown on TiO2 nanoribbons were investigated as photoanodes for photoelectrochemical water splitting. TiO2 nanoribbons were obtained by thermal oxidation of TiS3 samples. Then, BCN layers were successfully grown by plasma enhanced chemical vapour deposition. The structure and the chemical composition of the starting TiS3, the TiO2 nanoribbons and the TiO2-BCN heterostructures were investigated by Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Diffuse reflectance measurements showed a change in the gap from 0.94 eV (TiS3) to 3.3 eV (TiO2) after the thermal annealing of the starting material. Morphological characterizations, such as scanning electron microscopy and optical microscopy, show that the morphology of the samples was not affected by the change in the structure and composition. The obtained TiO2-BCN heterostructures were measured in a photoelectrochemical cell, showing an enhanced density of current under dark conditions and higher photocurrents when compared with TiO2. Finally, using electrochemical impedance spectroscopy, the flat band potential was determined to be equal in both TiO2 and TiO2-BCN samples, whereas the product of the dielectric constant and the density of donors was higher for TiO2-BCN.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2020 ◽  
Vol 405 ◽  
pp. 33-39
Author(s):  
Elisabeth Rauchenwald ◽  
Mario Lessiak ◽  
Ronald Weissenbacher ◽  
Sabine Schwarz ◽  
Roland Haubner

Chemical vapour deposited HfN can be utilised as a component of multilayer systems in protective coatings on cutting tools. In this study, related AlHfN coatings were synthesized through a reaction of metallic hafnium and aluminium with HCl gas forming gaseous HfCl4 and AlCl3, which were subsequently transported into a heated coating reactor. Via high temperatures and separately introduced NH3 and N2 as reaction gases, AlHfN coatings were deposited on hardmetal inserts. By varying the ratio between AlCl3 and HfCl4, compositionally different AlHfN coatings were examined. Additionally, surface morphology, composition as well as crystalline phases of the obtained coatings were analysed by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Finally, the microstructure of the cross section of a coating was investigated via transmission electron microscopy. The observations revealed a great impact of the gas composition on the morphology and crystal structures of the coatings. Within the layer, the growth of columnar microstructures was detected. Additionally, the formation of an amorphous HfN intermediate layer between the substrate and the AlHfN with a thickness of approximately 2 nm was found.


1993 ◽  
Vol 310 ◽  
Author(s):  
Lynnette D. Madsen ◽  
Louise Weaver

AbstractSingle oxides (with titanium or lead) deposited as thin films by low pressure metalorganic chemical vapour deposition were investigated by x-ray diffraction and Raman spectroscopy. Examination of mixed oxides (titanates) and silicates were also carried out using these techniques. The crystallographic nature of these thin films were examined and comparisons made to their bulk counterparts. The deposition and anneal conditions 600 for producing cubic PbTiO3 films are discussed briefly.


2016 ◽  
Vol 858 ◽  
pp. 221-224
Author(s):  
Lian Bi Li ◽  
Zhi Ming Chen

The Si/SiC heterojunctions were prepared on 6H-SiC(0001) by low-pressure chemical vapour deposition at 900°C. X-ray diffraction was employed to investigate the in-plane orientation of Si/SiC heterojunctions. A FCC-on-HCP parallel epitaxy was achieved for the Si(111)/SiC(0001) heterostructure with a growth temperature of 900°C and the in-plane orientation relationship was [01-1]Si//[11-20]6H-SiC. Based on the in-plane orientation characterizations, the lattice-structure model of the Si/6H-SiC heterostructure was constructed. It is shown that when the in-plane orientation was (111)[01-1]Si//(0001)[11-20]6H-SiC, the Si/6H-SiC interface had a 4:5 Si-to-SiC matching mode with a residual lattice-mismatch of 0.26%, and the misfit dislocation density at the Si/SiC interface was calculated as 0.487×1014cm-2.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 634
Author(s):  
Mohammad Reza Jandaghi ◽  
Abdollah Saboori ◽  
Gholamreza Khalaj ◽  
Mohammadreza Khanzadeh Ghareh Shiran

In this study, the microstructural evolutions and corrosion resistance of aluminium/copper joint fabricated through explosive welding process have been thoroughly investigated, while stand-off distance was variable. Microstructural analyses demonstrate that, regardless of grain refinement in the welding boundary, increasing the stand-off space is followed by a higher thickness of the localized melting pool. X-Ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) analyses recognized the binary intermetallic layers as a combination of Al2Cu and AlCu. Polarization and electrochemical impedance spectroscopy (EIS) corrosion tests revealed that a higher stand-off distance resulted in the increment of corrosion potential, current rate, and concentration gradient at the interface owing to the remarkable kinetic energy of the collision, which impaired corrosion resistance.


2001 ◽  
Vol 664 ◽  
Author(s):  
M. Luysberg ◽  
C. Scholten ◽  
L. Houben ◽  
R. Carius ◽  
F. Finger ◽  
...  

ABSTRACTThe structural properties of nip-µc-Si:H solar cells are investigated by transmission electron microscopy, X-ray diffraction and Raman spectroscopy. Different structural compositions are obtained by variation of the gas mixture during preparation by plasma enhanced chemical vapour deposition. Nucleation and growth of the n-layer onto textured TCO substrate was found to be similar to the growth on glass substrates. The growth of the i-layer follows a local epitaxy. This implies that the structure of the n-layer is of special importance regarding the control of the microstructure in microcrystalline Si nip solar cells.


2015 ◽  
Vol 33 (4) ◽  
pp. 725-731 ◽  
Author(s):  
K.O. Oyedotun ◽  
E. Ajenifuja ◽  
B. Olofinjana ◽  
B.A. Taleatu ◽  
E. Omotoso ◽  
...  

AbstractLithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD) technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 °C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS), UV-Vis spectrophotometry, X-ray diffraction (XRD) spectroscopy, atomic force microscopy (AFM) and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2) and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T) in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Ω·cm was obtained for the thin film. Compared with Mn0.2O0.8 thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26 film.


Sign in / Sign up

Export Citation Format

Share Document