Friction-Stir Welding of Work-Hardened Al-Mg Alloy with Nanoscale Particles

2018 ◽  
Vol 385 ◽  
pp. 359-363 ◽  
Author(s):  
Sergey Mironov ◽  
Sergey Malopheyev ◽  
Igor Vysotskiy ◽  
Daria Zhemchuzhnikova ◽  
Rustam Kaibyshev

In this work, feasibility of friction-stir welding (FSW) for joining of heavily deformed 5083 aluminum alloy was studied. To produce work hardening condition, the commercially available material was homogenized to precipitate strengthening particles and then subjected to equal-channel angular pressing (ECAP) at 300 °C to a true strain of ~12 via BCroute and successive rolling at the same temperature to 80 pct. of thickness reduction. Despite the subsequent FSW resulted in significant microstructural changes in stir zone, joint efficiency was found to be 98 pct.

2018 ◽  
Vol 385 ◽  
pp. 15-20
Author(s):  
Sergey Mironov ◽  
Sergey Malopheyev ◽  
Igor Vysotskiy ◽  
Rustam Kaibyshev

The commercial Zr-modified 5083 aluminum alloy was homogenized to precipitate nanoscale Al6Mn particles and then undergone to equal-channel angular pressing (ECAP) at 300 °C to a true strain of ~12 via BC route. The obtained ultrafine-grained material was subjected to friction-stir welding (FSW). The welding variables were selected to provide reasonable homogeneous microstructure distribution across the weld zone and thus to ensure a highly uniform elongation during subsequent superplastic tests of the joints. Superplastic behavior of the obtained welds is discussed.


2009 ◽  
Vol 25 (01) ◽  
pp. 21-26
Author(s):  
Pankaj Biswas ◽  
N. R. Mandal

Friction stir welding, a comparatively new joining technique, is mainly used for welding aluminum alloys. In the present work, an attempt has been made to study the effect of weld parameters of friction stir welding of marine grade 5083 aluminum alloy. Several test runs were conducted to assess the effects of tool rotating speed and tool traverse speed on the microstructure and mechanical properties of the welded joint. It was observed that the tool traverse speed has a significant effect on the end properties of the welded joint. Grain refinement was observed in the thermomechanically affected zone (TMAZ), which led to improved mechanical properties of the welded joint. However, an increase in welding speed keeping rotational speed constant led to deterioration of mechanical properties. The study strongly indicates a possibility of achieving a superior welded joint in marine grade 5083 aluminum alloy with adequate selection of process parameters.


2007 ◽  
Vol 456 (1-2) ◽  
pp. 344-349 ◽  
Author(s):  
Tomotake Hirata ◽  
Taizo Oguri ◽  
Hideki Hagino ◽  
Tsutomu Tanaka ◽  
Sung Wook Chung ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 88
Author(s):  
Konkrai Nakowong ◽  
Kittima Sillapasa

The semi-solid metal (SSM) 5083 aluminum alloy was developed for part manufacturing in the marine shipbuilding industry. This study aimed to optimize the parameters for the friction stir welding process of SSM 5083 aluminum alloy using the Taguchi and analysis of variance (ANOVA) techniques. Our analyses included tensile strength, hardness value, and the microstructure. The results revealed that the optimal parameters obtained for the tensile strength and hardness value in the stir zone (SZ) were A1B1C2 (1000 rpm, 10 mm/min, with a threaded cylindrical tool) with a tensile strength of 235.22 MPa and A2B1C2 (1200 rpm, 10 mm/min, with a threaded cylindrical tool) with a hardness value of 80.64 HV. According to the results obtained by ANOVA, it was found that the welding speed was the most significant process parameter in terms of influencing the tensile strength. Contrarily, no parameter influenced the hardness at a 95% confidence level. The examination using scanning electron microscopy (SEM) and an energy dispersive X-ray spectroscope (EDS) revealed an elongated grain structure and a void defect at the pin tip on the advancing side (AS) in the SZ. The particle distribution was uniform with Al2O3 and small porous SiO2 phases. Moreover, the quantities of C, O, Al, F, and Mg decreased.


2014 ◽  
Vol 57 ◽  
pp. 146-155 ◽  
Author(s):  
Yong Zhao ◽  
Lilong Zhou ◽  
Qingzhao Wang ◽  
Keng Yan ◽  
Jiasheng Zou

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3496
Author(s):  
Haijun Wang ◽  
Diqiu He ◽  
Mingjian Liao ◽  
Peng Liu ◽  
Ruilin Lai

The online prediction of friction stir welding quality is an important part of intelligent welding. In this paper, a new method for the online evaluation of weld quality is proposed, which takes the real-time temperature signal as the main research variable. We conducted a welding experiment with 2219 aluminum alloy of 6 mm thickness. The temperature signal is decomposed into components of different frequency bands by wavelet packet method and the energy of component signals is used as the characteristic parameter to evaluate the weld quality. A prediction model of weld performance based on least squares support vector machine and genetic algorithm was established. The experimental results showed that, when welding defects are caused by a sudden perturbation during welding, the amplitude of the temperature signal near the tool rotation frequency will change significantly. When improper process parameters are used, the frequency band component of the temperature signal in the range of 0~11 Hz increases significantly, and the statistical mean value of the temperature signal will also be different. The accuracy of the prediction model reached 90.6%, and the AUC value was 0.939, which reflects the good prediction ability of the model.


2021 ◽  
pp. 129872
Author(s):  
Wenquan Wang ◽  
Suyu Wang ◽  
Xinge Zhang ◽  
Yuxin Xu ◽  
Yingtao Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document