Buoyancy Effects on Human Skin Tissue Thermoregulation due to Environmental Influence

2020 ◽  
Vol 401 ◽  
pp. 107-116
Author(s):  
Lawal Hamid Adeola ◽  
Oluwole Daniel Makinde

This paper theoretically examines the impact of thermal buoyancy on human skin tissue’s blood flow, heat exchange and their interaction with the surrounding environment using a two phase mathematical model that relies on continuity, momentum and energy conservation equations in continuum mechanics. The tissue blood flows and heat transfer characteristics are determined numerically based on Darcy’s Brinkman model for a saturated porous medium coupled with modified Pennes bioheat equation while analytical approach is employed to tackle the model of interacting surrounding environmental buoyancy driven air flow with heat sink. The influence of embedded biophysical parameters on the skin tissue’s blood flow rate and temperature distribution together with friction coefficient at skin tissue surface and Nusselt number are display graphically and discussed quantitatively. It is found that a boost in thermal buoyancy enhances skin tissue heat transfer and blood flow rates.

2019 ◽  
Vol 9 (23) ◽  
pp. 5241 ◽  
Author(s):  
Ahmed M. Rashad ◽  
Waqar A. Khan ◽  
Saber M. M. EL-Kabeir ◽  
Amal M. A. EL-Hakiem

The micropolar nanofluids are the potential liquids that enhance the thermophysical features and ability of heat transportation instead of base liquids. Alumina and Titania nanoparticles are mixed in a micropolar fluid. The impact of convective boundary condition is also examined with assisting and opposing flows of both nanofluids. The main objective of this study is to investigate mixed convective flow and heat transfer of micropolar nanofluids across a cylinder in a saturated porous medium. Non-similar variables are used to make the governing equations dimensionless. The local similar and non-similar solutions are obtained by using the Runge-Kutta-Fehlberg method of seventh order. The impacts of various embedded variables on the flow and heat transfer of micropolar nanofluids are investigated and interpreted graphically. It is demonstrated that the skin friction and heat transfer rates depend on solid volume fraction of nanoparticles, Biot number, mixed convection, and material parameters.


Perfusion ◽  
1996 ◽  
Vol 11 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Philip D Beckley ◽  
Susan M Morris ◽  
James J Smith ◽  
Jerri L McNamara ◽  
Julie A Novak

With continuous enhancement in oxygenator design, the question is raised as to how these changes actually impact the performance of the oxygenator. The recent addition of two new oxygenators by the Bentley Division of Baxter Healthcare Corporation provided us with a unique opportunity to compare the performance of each device and isolate the impact of each design change on performance. While the basic design and flow patterns have remained the same, application of the Duraflo® II treatment has produced the Univox® Gold™ and a change in the fibre-winding technique has produced the SpiralGold™. This study compared the effects of heparin coating (Univox® to Univox® Gold™) and fibre-winding (Univox® Gold™ to SpiralGold™) on gas and heat transfer and resistance to blood flow (pressure drop). Six oxygenators of each model were evaluated utilizing an in vitro single pass circuit, which first conditioned bovine blood to the Association for the Advancement of Medical Instrumentation (AAMI) venous standards. Blood flows of 4.0, 5.0, 6.0 and 7.0 I/min, FiO2 values of 1.0, 0.8 and 0.6, and gas-to-blood flow ratios of 0.5, 1.0 and 1.5 were chosen as test variables. Data generated included oxygen transfer, carbon dioxide transfer, arterial pO2, resistance to blood flow, and coefficient of heat exchange. The results indicate that the Duraflo II treatment does not have a significant effect on gas and heat transfer or resistance to blood flow. The fibre-winding technique employed with the new SpiralGold™, however, has improved significantly gas exchange and arterial PO2 when compared with the previous Univox® models. Resistance to blood flow and coefficient of heat exchange were not affected significantly by the winding technique.


Author(s):  
Aniruddha Sanyal ◽  
Amit Dhiman

An analysis has been carried out to understand the consequences of side-by-side gap-ratio on thermal buoyancy-assisted two-dimensional flow past a pair of heated circular cylinders for a dominant viscous flow field. This is implemented through studies at Reynolds number ( Re) ranging from 5 to 40, Prandtl number ( Pr) 0.7, gap-ratio ( T/D) 1.5 to 4 and Richardson number ( Ri) 0 to 1. An ANSYS-based incompressible flow solver is used with Boussinesq approximation to account for density variations in the momentum equation. One can realize features like the steady-separated and steady-unseparated flow on varying flow and thermal parameters. Unlike streamlines, non-interacting isotherms are non-existent in the current numerical framework. The influence of gap-ratio on enhancement in Nusselt number ( Nu) is the best realized at T/D = 1.5 and buoyancy-aided effects play a dominant role for enhancement in Nu at diffusion and/or viscous-dominant conditions occurring at Re = 5. Correlations are developed to quantify the impact of T/D, Re, and Richardson number Ri on Nu. For the first time, Nu’s correlation based on varying side-by-side gap-ratio has been stated in a single expression. Finally, a comparison for the heat transfer enhancement/reduction in Nu under a similar numerical framework is provided with cases of high-Pr flow and/or different relatable flow arrangements for circular and square cylinders.


Author(s):  
Jie Liu ◽  
Walfre Franco ◽  
Guillermo Aguilar

Laser dermatological surgery (LDS) is the preferred therapeutic modality for various dermatoses, including port wine stain (PWS) birthmarks. LDS is commonly used in conjunction with cryogen spray cooling, which is an auxiliary procedure that pre-cools the superficial skin layer (epidermis) prior to laser irradiation to avoid non-specific and excessive epidermal heating. Clinical observations show that skin indents markedly during spray deposition due to the large momentum of cryogen droplets. Furthermore, the human skin surface is far from smooth. Therefore, with the objective to provide some insight into the interaction between cryogen sprays and the rough and deformable human skin surface, the impingement dynamics and heat transfer induced by single cryogen droplets falling on rough and indented skin phantoms are present in this paper. Epoxy skin phantoms with a constant semispherical indentation of depth and radius of 2.44 mm and 6.34 mm, respectively, were used to simulate indented skin. Each phantom had a different surface roughnesses varying from 0.5 μm to 50μm. The experiments were carried out within a pressurized chamber to control or eliminate droplet evaporation. A high-speed camera and the temperature sensors placed on the upper surface of the skin phantoms were synchronized to record the impact dynamics and temperature changes as cryogen droplets fell on them. The results show that the surface roughness affects the impact dynamics and heat transfer during single droplet impingement. As the surface roughness (Ra) increasing, the heat flux decrease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Obaid Ullah Mehmood ◽  
Sehrish Bibi ◽  
Dzuliana F. Jamil ◽  
Salah Uddin ◽  
Rozaini Roslan ◽  
...  

AbstractThe current work analyzes the effects of concentric ballooned catheterization and heat transfer on the hybrid nano blood flow through diseased arterial segment having both stenosis and aneurysm along its boundary. A fractional second-grade fluid model is considered which describes the non-Newtonian characteristics of the blood. Governing equations are linearized under mild stenosis and mild aneurysm assumptions. Precise articulations for various important flow characteristics such as heat transfer, hemodynamic velocity, wall shear stress, and resistance impedance are attained. Graphical portrayals for the impact of the significant parameters on the flow attributes have been devised. The streamlines of blood flow have been examined as well. The present finding is useful for drug conveyance system and biomedicines.


2002 ◽  
Vol 14 (02) ◽  
pp. 86-96 ◽  
Author(s):  
TZU-CHING SHIH ◽  
HONG-SEN KOU ◽  
CHIHNG-TSUNG LIAUH ◽  
WIN-LI LIN

This review focuses both on the basic formulations of bioheat equation in the living tissue and on the determination of thermal dose during thermal therapy. The temperature distributions inside the heated tissues, generally controlled by heating modalities, are obtained by solving the bioheat transfer equation. However, the major criticism for the Pennes' model focused on the assumption that the heat transfer by blood flow occurs in a non-directional, heat sink- or source-like term. Several bioheat transfer models have been introduced to compare their convective and perfusive effects in vascular tissues. The present review also elucidates thermal dose equivalence that represents the extent of thermal damage or destruction of tissue in the clinical treatment of tumor with local hyperthermia. In addition, this study uses the porous medium concept to describe the heat transfer in the living tissue with the directional effect of blood flow, and the polynomial expression of thermal dose in terms of the curve fitting of the experimental isosurvival curve data by Dewey et al. Results show that the values of factor R is a function of the heating temperature instead of the two different constants suggested by Sapareto and Dewey.


1985 ◽  
Vol 107 (2) ◽  
pp. 131-139 ◽  
Author(s):  
S. Weinbaum ◽  
L. M. Jiji

A new simplified three-dimensional bioheat equation is derived to describe the effect of blood flow on blood-tissue heat transfer. In two recent theoretical and experimental studies [1, 2] the authors have demonstrated that the so-called isotropic blood perfusion term in the existing bioheat equation is negligible because of the microvascular organization, and that the primary mechanism for blood-tissue energy exchange is incomplete countercurrent exchange in the thermally significant microvessels. The new theory to describe this basic mechanism shows that the vascularization of tissue causes it to behave as an anisotropic heat transfer medium. A remarkably simple expression is derived for the tensor conductivity of the tissue as a function of the local vascular geometry and flow velocity in the thermally significant countercurrent vessels. It is also shown that directed as opposed to isotropic blood perfusion between the countercurrent vessels can have a significant influence on heat transfer in regions where the countercurrent vessels are under 70-μm diameter. The new bioheat equation also describes this mechanism.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Sign in / Sign up

Export Citation Format

Share Document