Advective Transport Modeling for Spatial Analysis of Atmospheric Aerosols over Lagos Area of South Western Nigeria

Author(s):  
Mayowa Adeoye Lala ◽  
Olusola Adedayo Adesina ◽  
Anselm Igbafe

In this study atmospheric aerosols distribution over Lagos area of southwestern part of Nigeria was analyzed using backward air mass trajectory model. GPS information of the study region was used to simulate meteorological variables and aerosol data that have been stored by satellite imagery from the National Oceanography and Atmospheric Administration (NOAA) and Air Resource Laboratory (ARL). Hybrid Single-Particle Lagrangian Integrated Trajectories HYSPLIT was used to determine the wind-field information and also to obtain the backward air mass trajectory for atmospheric aerosols transport pattern at heights 0, 1000m and 2000m above ground level. The result showed that aerosols of sea-salt origin evolved from Atlantic ocean and spread over Lagos during the period under consideration. The average wind speed observed within the period ranged between 4 and 7m/s in south westerly direction which is attributed to the influence Atlantic Ocean. The results also showed that aerosol traversing Lagos area are mainly sea salts

2014 ◽  
Vol 14 (16) ◽  
pp. 8533-8557 ◽  
Author(s):  
M. Karl ◽  
N. Castell ◽  
D. Simpson ◽  
S. Solberg ◽  
J. Starrfelt ◽  
...  

Abstract. In this study, a new model framework that couples the atmospheric chemistry transport model system Weather Research and Forecasting–European Monitoring and Evaluation Programme (WRF-EMEP) and the multimedia fugacity level III model was used to assess the environmental impact of in-air amine emissions from post-combustion carbon dioxide capture. The modelling framework was applied to a typical carbon capture plant artificially placed at Mongstad, on the west coast of Norway. The study region is characterized by high precipitation amounts, relatively few sunshine hours, predominantly westerly winds from the North Atlantic and complex topography. Mongstad can be considered as moderately polluted due to refinery activities. WRF-EMEP enables a detailed treatment of amine chemistry in addition to atmospheric transport and deposition. Deposition fluxes of WRF-EMEP simulations were used as input to the fugacity model in order to derive concentrations of nitramines and nitrosamine in lake water. Predicted concentrations of nitramines and nitrosamines in ground-level air and drinking water were found to be highly sensitive to the description of amine chemistry, especially of the night-time chemistry with the nitrate (NO3) radical. Sensitivity analysis of the fugacity model indicates that catchment characteristics and chemical degradation rates in soil and water are among the important factors controlling the fate of these compounds in lake water. The study shows that realistic emission of commonly used amines result in levels of the sum of nitrosamines and nitramines in ground-level air (0.6–10 pg m−3) and drinking water (0.04–0.25 ng L−1) below the current safety guideline for human health that is enforced by the Norwegian Environment Agency. The modelling framework developed in this study can be used to evaluate possible environmental impacts of emissions of amines from post-combustion capture in other regions of the world.


2017 ◽  
Author(s):  
Cristian Velasco-Merino ◽  
David Mateos ◽  
Carlos Toledano ◽  
Joseph M. Prospero ◽  
Jack Molinie ◽  
...  

Abstract. Mineral dust aerosol can be a major driver of aerosol climatology in regions distant from the sources. This study addresses the change of columnar aerosol properties when mineral dust arrives to the Caribbean Basin after transport from Africa over the Atlantic Ocean. We use data from NASA Aerosol Robotic Network (AERONET) sites in five Caribbean and two West African sites to characterize changes in aerosol properties: aerosol optical depth, size distribution, single scattering albedo, and refractive indexes. After obtaining local aerosol climatology in each area, the air mass connections between West Africa and Caribbean Basin have been investigated by means of air mass back trajectories. Over the period 1996–2014 we identify 3174 connection days, on average, 167 connection days per year. Among these, 1162 pairs of data present aerosol data in Caribbean sites with corresponding aerosol observations in Western Africa sites ~5–7 days before. Of these 1162 days, 484 meet the criteria to be characterized as mineral dust outbreaks. Based on these days we observe the following changes in aerosol-related properties in transiting the Atlantic: AOD decreases about 0.16 or −30 %; the volume particle size distribution shape shows no changes; single scattering albedo, refractive indexes, and asymmetry factor remain unchanged; the difference in the effective radius in West African area with respect to Caribbean Basin is between 0 and +0.3 µm; and half of the analyzed cases present predominance of non-spherical particles in both areas.


2013 ◽  
Vol 75 ◽  
pp. 163-170 ◽  
Author(s):  
A. Ioannidou ◽  
E. Giannakaki ◽  
M. Manolopoulou ◽  
S. Stoulos ◽  
E. Vagena ◽  
...  
Keyword(s):  
Air Mass ◽  

2016 ◽  
Vol 16 (23) ◽  
pp. 15277-15299 ◽  
Author(s):  
Caroline Struckmeier ◽  
Frank Drewnick ◽  
Friederike Fachinger ◽  
Gian Paolo Gobbi ◽  
Stephan Borrmann

Abstract. Investigations on atmospheric aerosols and their sources were carried out in October/November 2013 and May/June 2014 consecutively in a suburban area of Rome (Tor Vergata) and in central Rome (near St Peter's Basilica). During both years a Saharan dust advection event temporarily increased PM10 concentrations at ground level by about 12–17 µg m−3. Generally, in October/November the ambient aerosol was more strongly influenced by primary emissions, whereas higher relative contributions of secondary particles (sulfate, aged organic aerosol) were found in May/June. Absolute concentrations of anthropogenic emission tracers (e.g. NOx, CO2, particulate polycyclic aromatic hydrocarbons, traffic-related organic aerosol) were generally higher at the urban location. Positive matrix factorization was applied to the PM1 organic aerosol (OA) fraction of aerosol mass spectrometer (HR-ToF-AMS) data to identify different sources of primary OA (POA): traffic, cooking, biomass burning and (local) cigarette smoking. While biomass burning OA was only found at the suburban site, where it accounted for the major fraction of POA (18–24 % of total OA), traffic and cooking were more dominant sources at the urban site. A particle type associated with cigarette smoke emissions, which is associated with a potential characteristic marker peak (m∕z 84, C5H10N+, a nicotine fragment) in the mass spectrum, was only found in central Rome, where it was emitted in close vicinity to the measurement location. Regarding secondary OA, in October/November, only a very aged, regionally advected oxygenated OA was found, which contributed 42–53 % to the total OA. In May/June total oxygenated OA accounted for 56–76 % of the OA. Here a fraction (18–26 % of total OA) of a fresher, less oxygenated OA of more local origin was also observed. New particle formation events were identified from measured particle number concentrations and size distributions in May/June 2014 at both sites. While they were observed every day at the urban location, at the suburban location they were only found under favourable meteorological conditions, but were independent of advection of the Rome emission plume. Particles from sources in the metropolitan area of Rome and particles advected from outside Rome contributed 42–70 and 30–58 % to the total measured PM1, respectively. Apart from the general aerosol characteristics, in this study the properties (e.g. emission strength) and dynamics (e.g. temporal behaviour) of each identified aerosol type is investigated in detail to provide a better understanding of the observed seasonal and spatial differences.


2014 ◽  
Vol 15 (2) ◽  
pp. 685-696 ◽  
Author(s):  
S. Froidurot ◽  
I. Zin ◽  
B. Hingray ◽  
A. Gautheron

Abstract In most meteorological or hydrological models, the distinction between snow and rain is based only on a given air temperature. However, other factors such as air moisture can be used to better distinguish between the two phases. In this study, a number of models using different combinations of meteorological variables are tested to determine their pertinence for the discrimination of precipitation phases. Spatial robustness is also evaluated. Thirty years (1981–2010) of Swiss meteorological data are used, consisting of radio soundings from Payerne as well as present weather observations and surface measurements (mean hourly surface air temperature, mean hourly relative humidity, and hourly precipitation) from 14 stations, including Payerne. It appeared that, unlike surface variables, variables derived from the atmospheric profiles (e.g., the vertical temperature gradient) hardly improve the discrimination of precipitation phase at ground level. Among all tested variables, surface air temperature and relative humidity show the greatest explanatory power. The statistical model using these two variables and calibrated for the case study region provides good spatial robustness over the region. Its parameters appear to confirm those defined in the model presented by Koistinen and Saltikoff.


2008 ◽  
Vol 8 (7) ◽  
pp. 1881-1896 ◽  
Author(s):  
M. Santese ◽  
F. De Tomasi ◽  
M. R. Perrone

Abstract. Aerosol products by AERONET sun-sky radiometer measurements combined with air-mass backtrajectories were analyzed to identify source regions and pathways of air masses carrying aerosols to south-east Italy, and to determine the dependence of aerosol mean optical properties on advection patterns. Aerosol optical depth (AOD), fine mode fraction (η ), single scattering albedo (SSA), asymmetry factor (g), and lidar ratio (Lr) at 440 nm were used to characterize aerosol properties. The analysis of 5-day-backtrajectories ending in Lecce on south-east Italy and referring to 240 measurement days of the 2003–2004 years revealed that 32% of the measurement days were characterized by air masses coming from all continental European sources with the exception of Spain. 3% of the measurement days were characterized by air masses coming from both the Southern Mediterranean Sea and the Africa continent, and the Western Mediterranean, the Iberian Peninsula, and the Atlantic Ocean. 62% of the measurement days were characterized by mixed advection patterns. We found that AOD, SSA and g average values were not significantly dependent on air mass source regions. In contrast, η and Lr average values were quite affected by the air mass source region. AOD, &eta, SSA, g, and Lr average values, which were equal to 0.29±0.15, 0.93±0.03, 0.93±0.03, 0.67±0.03, and 72±20 sr, respectively indicated that the aerosol advected from all continental European sources with the exception of Spain, could be considered representative of "continental average aerosol", mostly made of water soluble and a small amount of soot and insoluble components. Polluted-desert dust particles characterized by AOD=0.29±0.05, η=0.72±0.05, SSA=0.94±0.03, g=0.69±0.02, Lr=56±13 sr, were advected over south-east Italy from the Southern Mediterranean Sea and the Africa continent. The Western Mediterranean, the Iberian Peninsula, and the Atlantic Ocean were instead responsible of the advection of maritime-polluted particles, which were characterized by AOD=0.27±0.17, η=0.8±0.1, SSA=0.94±0.03, g=0.67±0.03, Lr=58±24 sr. Hence, we found that the aerosol load over south-east Italy was dominated by moderately-absorbing, fine-mode particles even if it was also affected by the minor contribution of desert and maritime type aerosol. The application of an aerosol mask to the data points retrieved on measurement days characterized by mixed advection patterns, supported last comment


2012 ◽  
Vol 12 (7) ◽  
pp. 16603-16646 ◽  
Author(s):  
M. Dall'Osto ◽  
X. Querol ◽  
A. Alastuey ◽  
C. O'Dowd ◽  
R. M. Harrison ◽  
...  

Abstract. Sources and evolution of ultrafine particles (<0.1 μ m diameter) were investigated both horizontally and vertically in the large urban agglomerate of Barcelona, Spain. Within the SAPUSS project (Solving Aerosol Problems by Using Synergistic Strategies), a large number of instruments was deployed simultaneously at different monitoring sites (road, two urban background, regional background, urban tower 150 μa.s.l., urban background tower site 80 m a.s.l.) during a 4 week period in September-October 2010. Particle number concentrations (N>5nm) are highly correlated with black carbon (BC) at all sites only under strong vehicular traffic influences. By contrast, under clean atmospheric conditions (low condensation sinks, CS) such correlation diverges towards much higher N/BC ratios at all sites, indicating additional sources of particles including secondary production of freshly nucleated particles. This is also evident in the urban background annual mean diurnal trend of N/BC, showing a midday peak in all seasons. Size-resolved aerosol distributions (N10-500) as well as particle number concentrations (N>5nm) allow us to identify two types of nucleation and growth events: a regional type event originating in the whole study region and impacting almost simultaneously the urban city of Barcelona and the surrounding background area; and an urban type which originates only within the city centre but whose growth continues while transported away from the city to the regional background. Furthermore, during these clean air days, higher N are found at tower level than at ground level only in the city centre whereas such a difference is not so pronounced at the remote urban background tower. In other words, this study suggests that the column of air above the city ground level possesses the best compromise between low CS and high vapour source, hence enhancing the concentrations of freshly nucleated particles. By contrast, within stagnant polluted atmospheric conditions, higher N and BC concentrations are always measured at ground level relative to tower level at all sites. Our study suggests that the city centre is a source of both non-volatile traffic primary (29–39%) and secondary freshly nucleated particles (up to 61–71%) at all sites. We suggest that organic compounds evaporating from freshly emitted traffic particles are a possible candidate for new particle formation within the city and urban plume.


Sign in / Sign up

Export Citation Format

Share Document