GNPs Reinforced Epoxy Nanocomposites Used as Thermal Interface Materials

2016 ◽  
Vol 38 ◽  
pp. 18-25 ◽  
Author(s):  
A. Jiménez-Suárez ◽  
R. Moriche ◽  
S.G. Prolongo ◽  
M. Sánchez ◽  
A. Ureña

The current tendency in electronics is the reduction of size while continuously increasing the power consumption due to new functionalities and applications. Both aspects generate a heat increment. Consequently, dissipating the heat to the environment is necessary in order to avoid component overheating. [1,2]. The most efficient way to achieve it is to allow the heat to flow from the hot component to a heat sink. In order to improve the efficiency of this process, thermal resistance between both components must be reduced which is usually done by using a thermal interface material (TIM) between both surfaces [3-5]. This material should fill the gaps created due to the microscopic roughness of both surfaces and it must have good thermal conductivity [6]. These air filled gaps result in a very high contact resistance between joined parts, as the air thermal conductivity is very low [7].

Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


Author(s):  
David Shaddock ◽  
Stanton Weaver ◽  
Ioannis Chasiotis ◽  
Binoy Shah ◽  
Dalong Zhong

The power density requirements continue to increase and the ability of thermal interface materials has not kept pace. Increasing effective thermal conductivity and reducing bondline thickness reduce thermal resistance. High thermal conductivity materials, such as solders, have been used as thermal interface materials. However, there is a limit to minimum bondline thickness in reducing resistance due to increased fatigue stress. A compliant thermal interface material is proposed that allows for thin solder bondlines using a compliant structure within the bondline to achieve thermal resistance <0.01 cm2C/W. The structure uses an array of nanosprings sandwiched between two plates of materials to match thermal expansion of their respective interface materials (ex. silicon and copper). Thin solder bondlines between these mating surfaces and high thermal conductivity of the nanospring layer results in thermal resistance of 0.01 cm2C/W. The compliance of the nanospring layer is two orders of magnitude more compliant than the solder layers so thermal stresses are carried by the nanosprings rather than the solder layers. The fabrication process and performance testing performed on the material is presented.


2006 ◽  
Vol 968 ◽  
Author(s):  
Yimin Zhang ◽  
Allison Xiao ◽  
Jeff McVey

ABSTRACTThermal interface materials (TIMs) are used to dissipate thermal energy from a heat-generating device to a heat sink via conduction. The growing power density of the electronic device demands next-generation high thermal conductivity and/or low thermal resistance TIMs. This paper discusses the current state-of-art TIM solutions, particularly fusible particles for improved thermal conductivity. The paper will address the benefits and limitations of this approach, and describe a system with unique filler morphology. Thermal resistance and diffusivity/conductivity characterization techniques are also discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1699
Author(s):  
Sriharsha Sudhindra ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

We report on experimental investigation of thermal contact resistance, RC, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, Sq. It is found that the thermal contact resistance depends on the graphene loading, ξ, non-monotonically, achieving its minimum at the loading fraction of ξ ~15 wt %. Decreasing the surface roughness by Sq~1 μm results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, KTIM, thermal contact resistance, RC, and the total thermal resistance of the thermal interface material layer on ξ and Sq can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 530
Author(s):  
Mazlan Mohamed ◽  
Mohd Nazri Omar ◽  
Mohamad Shaiful Ashrul Ishak ◽  
Rozyanty Rahman ◽  
Zaiazmin Y.N ◽  
...  

Epoxy mixed with others filler for thermal interface material (TIM) had been well conducted and developed. There are problem occurs when previous material were used as matrix material likes epoxy that has non-uniform thickness of thermal interface material produce, time taken for solidification and others. Thermal pad or thermal interface material using graphene as main material to overcome the existing problem and at the same time to increase thermal conductivity and thermal contact resistance. Three types of composite graphene were used for thermal interface material in this research. The sample that contain 10 wt. %, 20 wt. % and 30 wt. % of graphene was used with different contain of graphene oxide (GO).  The thermal conductivity of thermal interface material is both measured and it was found that the increase of amount of graphene used will increase the thermal conductivity of thermal interface material. The highest thermal conductivity is 12.8 W/ (mK) with 30 w. % graphene. The comparison between the present thermal interface material and other thermal interface material show that this present graphene-epoxy is an excellent thermal interface material in increasing thermal conductivity.  


Author(s):  
Gary Lehmann ◽  
Hao Zhang ◽  
Arun Gowda ◽  
David Esler

Measurements and modeling of the thermal resistance of thin (< 100 microns) bond-lines are reported for composite thermal interface materials (TIMs). The composite TIMs consist of alumina particles dispersed in a polymer matrix to form six different adhesive materials. These model TIMs have a common matrix material and are distinguished by their particle size distributions. Bond-lines are formed in a three-layer assembly consisting of a substrate-TIM-substrate structure. The thermal resistance of the bond-line is measured, as a function of bond-line thickness, using the laser flash-technique. A linear variation of resistance with bond-line thickness is observed; Rbl = β · Lbl + Ro. A model is presented that predicts the effective thermal conductivity of the composite as a function of the particle and matrix conductivity, the particle-matrix surface conductance, the particle volume fraction and the particle size distribution. Specifically a method is introduced to account for a broad, continuous size distribution. A particle-matrix surface conductance value of ∼10W/mm2K is found to give good agreement between the measured and predicted effective thermal conductivity values of the composite TIMs.


Author(s):  
S. Mark Zhang ◽  
Diane Swarthout ◽  
Thomas Noll ◽  
Susan Gelderbloom ◽  
Douglas Houtman ◽  
...  

Thermal interface materials (TIM) play a very important role in effectively dissipating unwanted heat generated in electronic devices. This requires that the TIM should have a high bulk thermal conductivity, intimate contact with the substrate surfaces, and the capability to form a thin bond line. In designing new TIMs to meet these industry needs, alkyl methyl siloxane (AMS) waxes have been studied as phase change matrices. AMS waxes are synthesized by grafting long chain alpha-olefins on siloxane polymers. The melting point range of the silicone wax is determined by the hydrocarbon chain length and the siloxane structure. When the AMS wax is mixed with thermally conductive fillers such as alumina, a phase change compound is created. The bulk thermal conductivities of the phase change material (PCM) are reduced as they go through the phase change transition from solid to liquid. By coating the PCM onto an aluminum mesh, both the mechanical strength and the thermal conductivity are drastically improved. The thermal conductivity increases from 4.5 W/mK for the PCM without aluminum support to 7.5 W/mK with the supporting mesh. The thermal resistance of the aluminum-supported sheet at a bond line thickness of 115 microns has been found to be ∼0.24 cm2-C/W. Applying pressure at the time of application has a positive effect on the thermal performance of the PCM. Between contact pressures of 5–80 psi, the thermal resistance decreases as the pressure increases. The weak mechanical strength of the phase change material turns out to be a benefit when ease of rework and the effects of shock and vibration during shipping and handling are considered. A stud pull test of the aluminum mesh-supported PCM shows an average of 13 psi stress at the peak of the break.


2001 ◽  
Vol 123 (5) ◽  
pp. 969-975 ◽  
Author(s):  
Ravi S. Prasher

Microprocessor powers are increasing at a phenomenal rate, which requires very small thermal resistance between the die (chip) and the ambient, if the current economical methods of conduction and convection cooling are to be utilized. A typical thermal solution in flip chip technology utilizes two levels of thermal interface materials: between the die and the heat spreader, and between the heat spreader and the heat sink. Phase change materials and thermal greases are among the most prominent interstitial thermal interface materials (TIM) used in electronic packaging. These TIMs are typically polymeric matrix loaded with highly conducting filler particles. The dwindling thermal budget has necessitated a better understanding of the thermal resistance of each component of the thermal solution. Thermal conductivity of these particle-laden materials is better understood than their contact resistance. A careful review of the literature reveals the lack of analytical models for the prediction of contact resistance of these types of interstitial materials, which possess fluidic properties. This paper introduces an analytical model for the thermal contact resistance of these types of interstitial materials. This model is compared with the experimental data obtained on the contact resistance of these TIMs. The model, which depends on parameters such as, surface tension, contact angle, thermal conductivity, roughness and pressure matches very well with the experimental data at low pressures and is still within the error bars at higher pressures.


Author(s):  
Vinh Khuu ◽  
Michael Osterman ◽  
Avram Bar-Cohen ◽  
Michael Pecht

Thermal interface materials are used to reduce the interfacial thermal resistance between contacting surfaces inside electronic packages, such as at the die-heat sink or heat spreader-heat sink interfaces. In this study, the change in thermal performance was measured for elastomeric gap pads, gap fillers, and an adhesive throughout reliability tests. Three-layer composite structures were used to simulate loading conditions encountered by thermal interface materials in actual applications. The thermal resistance of the thermal interface material, including contact and bulk resistance, was calculated using the Lee algorithm, an iterative method that uses properties of the single layers and the 3-layer composite structures, measured using the laser flash method. Test samples were subjected to thermal cycling tests, which induced thermomechanical stresses due to the mismatch in the coefficients of thermal expansion of the dissimilar coupon materials. The thermal resistance measurements from the laser flash showed little change or slight improvement in the thermal performance over the course of temperature cycling. Scanning acoustic microscope images revealed delamination in one group of gap pad samples and cracking in the putty samples.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
R. Kempers ◽  
A. M. Lyons ◽  
A. J. Robinson

A metal microtextured thermal interface material (MMT-TIM) has been proposed to address some of the shortcomings of conventional TIMs. These materials consist of arrays of small-scale metal features that plastically deform when compressed between mating surfaces, conforming to the surface asperities of the contacting bodies and resulting in a low-thermal resistance assembly. The present work details the development of an accurate thermal model to predict the thermal resistance and effective thermal conductivity of the assembly (including contact and bulk thermal properties) as the MMT-TIMs undergo large plastic deformations. The main challenge of characterizing the thermal contact resistance of these structures was addressed by employing a numerical model to characterize the bulk thermal resistance and estimate the contribution of thermal contact resistance. Furthermore, a correlation that relates electrical and thermal contact resistance for these MMT-TIMs was developed that adequately predicted MMT-TIM properties for several different geometries. A comparison to a commercially available graphite TIM is made as well as suggestions for optimizing future MMT-TIM designs.


Sign in / Sign up

Export Citation Format

Share Document