Preparation and Structural Characterization of SiO2-ZrO2 Aerogels

2007 ◽  
Vol 336-338 ◽  
pp. 2282-2285
Author(s):  
Xiao Dong He ◽  
He Xin Zhang ◽  
Yao Li ◽  
Chang Qing Hong ◽  
Jiu Peng Zhao

Low density SiO2-xZrO2 aerogels with x=35wt%, 65wt%, 75wt%, 90wt%, 95wt% were prepared by CO2 supercritical drying technique with tetraethylorthosilicate (TEOS) and zirconyl nitrate dihydrate (ZrO(NO3)2 .2H2O) by hydrolytic polycondensation under different chemical conditions. The prepared aerogels are performed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR) and BET surface areas to characterize and analyze the morphology and pore structure of SiO2-ZrO2 aerogels. The results showed that the SiO2-ZrO2 areogels are the typical of nano mesopores and the average pore size is about 50 nm. The specific surface areas varied from 345.5 to 615.5 m2/g with (SBET)MAX = 615.5 m2/g with 20wt% Zirconia; Moreover a mass of Si-O-Zr bands formed in the aerogels and the formation mechanism of Si-O-Zr bands are also discussed.

2012 ◽  
Vol 600 ◽  
pp. 174-177 ◽  
Author(s):  
Jian Fei Xia ◽  
Zong Hua Wang ◽  
Yan Zhi Xia ◽  
Fei Fei Zhang ◽  
Fu Qiang Zhu ◽  
...  

Zirconia-graphene composite (ZrO2-G) has been successfully synthesized via decomposition of ZrOCl2•6H2O in a water-isopropanol system with dispersed graphene oxide (GO) utilizing Na2S as a precursor could enable the occurrence of the deposition of Zr4+ and the deoxygenation of GO at the same time. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the samples. It was found that graphene were fully coated with ZrO2, and the ZrO2 existing in tetragonal phase, which resulted in the formation of two-dimensional composite.


2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules


2012 ◽  
Vol 601 ◽  
pp. 21-25
Author(s):  
Wei Yi Dan ◽  
Jian Fen Li ◽  
Xiang Chen Tu ◽  
Kui Le Jia

NiO nanoparticles were successfully prepared by decomposing the predecessor bis(glycinato)nickel(II)dihydrate in the presence of oleylamine and triphenylphosphine (TPP), and different approaches including Fourier transforms infrared spectrometry(FT-IR), X-ray diffraction(XRD) and transmission electron microscopy (TEM) were used to characterize the NiO nanoparticles. Meanwhile, the effects of TPP concentration and reaction time on the size and yield of NiO nanoparticles derived from precursors were thoroughly investigated in this paper. The analysis results indicated that the prepared NiO nanoparticles were found spherical in shape and demonstrated weak agglomeration. They had generally high purity and a fine crystal phase of cubic syngony. Furthermore, the effects of the TPP concentration and reaction time on the size and yield of NiO nanoparticles are very crucial, higher concentration of TPP would results in reduction of both the mean size and yield of NiO particles. However both yields and particles size of NiO nanoparticles continuously increased as increasing reaction time, after more than 60 minutes, the size and yield of NiO nanoparticles kept hardly change.


2013 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Mahdiyeh Esmaeili-Zare ◽  
Masoud Salavati-Niasari ◽  
Davood Ghanbari

AbstractMercury selenide nanostructures were synthesized from the reaction of N, N′-bis(salicylidene)propane-1,3-diamine mercury complex, (Hg(Salpn)) as a novel precursor, via sonochemical method. The effect of different surfactant on the morphology and particle size of the products was investigated. Products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray energy dispersive spectroscopy (EDS).


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chaturbhuj K. Saurabh ◽  
Asniza Mustapha ◽  
M. Mohd. Masri ◽  
A. F. Owolabi ◽  
M. I. Syakir ◽  
...  

Cellulose nanofibers (CNF) were isolated fromGigantochloa scortechiniibamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.


2015 ◽  
Vol 1786 ◽  
pp. 57-63
Author(s):  
Vasuda Bhatia ◽  
Bhawana Singh ◽  
Vinod K. Jain

ABSTRACTNano-graphite oxide has been synthesized from graphite flakes using modified Hummer’s method. Fourier transform infrared (FT-IR) data, x-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed functionalization of the synthesised nano-graphitic platelets with oxygenated bonds. Using thermal embedding technique for the fabrication of self-assembled films, electrodes of nano-graphite oxide have been fabricated for enzyme free detection of cholesterol electrochemically. The electrodes provided a linear response for the enzyme less detection in the range of 50mg/dl to 500mg/dl with a correlation coefficient, R, of 0.99784 and sensitivity of 1.0587 µA/mg.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Manqing Ai ◽  
Wenli Qin ◽  
Tian Xia ◽  
Ying Ye ◽  
Xuegang Chen ◽  
...  

Novel nanocomposites have been prepared by intercalating TiO2 nanoparticles into talc. The nanocomposites have been verified by X-ray diffraction (XRD) from the appearance of a characteristic diffraction peak of TiO2. Thermal behavior of the prepared samples is examined by thermogravimetric analyzer (TGA), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS), which have shown no TiO2 particles on the surface of the talc. The TiO2 particles are found in the layers of talc by transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller (BET) method, which have shown the increase of specific surface areas and total pore volumes and the decline of average pore diameters. As the strong adsorption ability of talc can intensify the power of photon absorption and capture-recombination carriers, more than 99.5% of 2,4-dichlorophenol can be degraded in 1 h by the nanocomposite under an ultraviolet lamp in neutral solution and room temperature after reaching adsorption equilibrium, and the result of adsorbance is in accord with the first-order kinetic. The degradation rate was maintained at about 99% after 20 times. Therefore, the prepared talc/TiO2 nanocomposite is an efficient, stable, and recyclable material for wastewater treatment.


2013 ◽  
Vol 734-737 ◽  
pp. 2528-2531
Author(s):  
Yu Mei Gong ◽  
Qing Liang ◽  
Jing Guo ◽  
Hong Zhang ◽  
Fu Cheng Guan

Anatase/brookite mixtured TiO2nanoparticles have been synthesized by using a two-step process through a chimie douce technique. The as-prepared powders were characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and a nitrogen adsorption apparatus in multipoint Brunauer-Emmett-Teller (BET) method. The results indicated that the TiO2nanoparticles were composed of biphasial anatase/brookite mixtures, 38% anatase phase formed in quasi-spherical shape and 62% brookite phase formed in nanorod shape. The specific surface area, the average pore diameter, and the specific pore volume were 100.06 m2/g, 14.0 nm, and 0.561 cm3/g, respectively.


2011 ◽  
Vol 399-401 ◽  
pp. 1915-1918
Author(s):  
Rui Jie Guo ◽  
Xiao Juan Sha ◽  
Lei Lei Cao

The lamellar nanostructured yttrium films on α-Al2O3 substrates were successfully synthesized by electroless deposition using the lyotropic liquid crystalline templating strategy. The reaction of hydrazine hydrate and Y3+ dissolved within the aqueous domains of the lyotropic liquid crystalline phase produced the nanostructured yttrium films. The low-angle X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM) indicated that the as-resulted films possessed lamellar regular array of nanochannels with periodicity of 6 nm. With well-defined nanochannels and higher surface areas, the nanostructured films may find applications in the field of electronic materials.


Sign in / Sign up

Export Citation Format

Share Document