scholarly journals Photocatalytic Degradation of 2,4-Dichlorophenol by TiO2 Intercalated Talc Nanocomposite

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Manqing Ai ◽  
Wenli Qin ◽  
Tian Xia ◽  
Ying Ye ◽  
Xuegang Chen ◽  
...  

Novel nanocomposites have been prepared by intercalating TiO2 nanoparticles into talc. The nanocomposites have been verified by X-ray diffraction (XRD) from the appearance of a characteristic diffraction peak of TiO2. Thermal behavior of the prepared samples is examined by thermogravimetric analyzer (TGA), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS), which have shown no TiO2 particles on the surface of the talc. The TiO2 particles are found in the layers of talc by transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller (BET) method, which have shown the increase of specific surface areas and total pore volumes and the decline of average pore diameters. As the strong adsorption ability of talc can intensify the power of photon absorption and capture-recombination carriers, more than 99.5% of 2,4-dichlorophenol can be degraded in 1 h by the nanocomposite under an ultraviolet lamp in neutral solution and room temperature after reaching adsorption equilibrium, and the result of adsorbance is in accord with the first-order kinetic. The degradation rate was maintained at about 99% after 20 times. Therefore, the prepared talc/TiO2 nanocomposite is an efficient, stable, and recyclable material for wastewater treatment.

2013 ◽  
Vol 734-737 ◽  
pp. 2528-2531
Author(s):  
Yu Mei Gong ◽  
Qing Liang ◽  
Jing Guo ◽  
Hong Zhang ◽  
Fu Cheng Guan

Anatase/brookite mixtured TiO2nanoparticles have been synthesized by using a two-step process through a chimie douce technique. The as-prepared powders were characterized by Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and a nitrogen adsorption apparatus in multipoint Brunauer-Emmett-Teller (BET) method. The results indicated that the TiO2nanoparticles were composed of biphasial anatase/brookite mixtures, 38% anatase phase formed in quasi-spherical shape and 62% brookite phase formed in nanorod shape. The specific surface area, the average pore diameter, and the specific pore volume were 100.06 m2/g, 14.0 nm, and 0.561 cm3/g, respectively.


2007 ◽  
Vol 336-338 ◽  
pp. 2282-2285
Author(s):  
Xiao Dong He ◽  
He Xin Zhang ◽  
Yao Li ◽  
Chang Qing Hong ◽  
Jiu Peng Zhao

Low density SiO2-xZrO2 aerogels with x=35wt%, 65wt%, 75wt%, 90wt%, 95wt% were prepared by CO2 supercritical drying technique with tetraethylorthosilicate (TEOS) and zirconyl nitrate dihydrate (ZrO(NO3)2 .2H2O) by hydrolytic polycondensation under different chemical conditions. The prepared aerogels are performed by X-ray Diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR) and BET surface areas to characterize and analyze the morphology and pore structure of SiO2-ZrO2 aerogels. The results showed that the SiO2-ZrO2 areogels are the typical of nano mesopores and the average pore size is about 50 nm. The specific surface areas varied from 345.5 to 615.5 m2/g with (SBET)MAX = 615.5 m2/g with 20wt% Zirconia; Moreover a mass of Si-O-Zr bands formed in the aerogels and the formation mechanism of Si-O-Zr bands are also discussed.


2019 ◽  
Vol 9 (6) ◽  
pp. 1100 ◽  
Author(s):  
Xiangfeng Guan ◽  
Peihui Luo ◽  
Yunlong Yu ◽  
Xiaoyan Li ◽  
Dagui Chen

In this paper, we prepared mesoporous nickel cobaltite (NiCo2O4) nanostructures with multi-morphologies by simple solvothermal and subsequent heat treatment. By adjusting the solvent type, mesoporous NiCo2O4 nanoparticles, nanorods, nanowires, and microspheres were easily prepared. The as-prepared products were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) method. Furthermore, the catalytic activities towards the thermal decomposition of ammonium perchlorate (AP) of as-prepared NiCo2O4 nanostructures were investigated.


2020 ◽  
Vol 81 (5) ◽  
pp. 1080-1089
Author(s):  
Huan-Yan Xu ◽  
Dan Lu ◽  
Qu Tan ◽  
Xiu-Lan He ◽  
Shu-Yan Qi

Abstract Bismuth oxyhalides (BiOXs, X = Cl, Br and I) are emerging photocatalytic materials with unique layered structure, flexible band structure and superior photocatalytic activity. The purpose of this study was to develop a facile alcoholysis route to prepare BiOClxI1−x nanosheet solid solutions at room temperature. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence emission spectroscopy (PL) and Brunauer–Emmett–Teller (BET) surface area analyzer were used to characterize the as-prepared photocatalysts. These results revealed that two-dimension BiOClxI1−x nanosheet solid solutions could be obtained with high percentage of {001} crystal facets exposed. Moreover, the formation of solid solution could regularly change the optical absorption thresholds and band gaps of BiOClxI1−x photocatalysts. The photocatalytic experiments indicated that BiOCl0.75I0.25 exhibited the highest photocatalytic performance for the degradation of Rhodamine B (RhB) under simulated sunlight irradiation and the photocatalytic process followed a pseudo-first-order kinetic equation. A possible mechanism of RhB photodegradation over BiOClxI1−x solid solutions was proposed based on the structural properties of BiOClxI1−x solid solutions and RhB photosensitization.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550031 ◽  
Author(s):  
Feng Rao ◽  
Shaoxian Song ◽  
Alejandro Lopez-Valdivieso

Ag pillared interlayered clays ( Ag -PILCs) were synthesized through a novel method, in which Ag nanoparticles were formed in montmorillonite interlayers. In this method, silver ions were first exchanged into montmorillonite interlayers, and then reduced into Ag nanoparticles by trisodium citrate at 100°C in aqueous solutions. The synthesized Ag @montmorillonite nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and its surface area was evaluated by using Brunauer–Emmet–Teller (BET) method. Compared to traditional PILCs synthesized through ion exchange method, the formed Ag -PILCs had better thermal stability and stronger structure because their pillars are nanoparticles. Furthermore, this method introduces a possibility to control the size of the pillars and thus the pore size of the PILCs, due to that the nanoparticle pillars can be modified on their forms and diameters in the synthesizing process. Also, it was found that the intercalating Ag nanoparticle pillars were formed at restricted pH values and silver ion concentrations.


2011 ◽  
Vol 295-297 ◽  
pp. 869-872
Author(s):  
Qing Shan Li ◽  
Xin Wang ◽  
Jun Liu ◽  
Guang Zhong Xing

Six-ring Rock is widely used as containers of water and additives to produce health care products. In this paper, the composition and microstructure of Six-ring Rock have been investigated by using scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, x-ray diffraction and other technologies. Results show that Six-ring Rock is composed of CaMg(CO3)2, SiO2 and KAlSi3O8. Fe atoms exist in CaMg(CO3)2 by replacing Mg atoms. Six-ring Rock shows nano-size lamellar and acerose microstructures on the surface, and nano-size monocrystals in the body. Six-ring Rock is a natural nano structure mineral.


2013 ◽  
Vol 331 ◽  
pp. 497-502
Author(s):  
Ai Hua Wang ◽  
Ping Che ◽  
Jie Min Liu ◽  
Gui Hua Wang

in this paper, nano-ZnO were synthesized via a sol-gel method, and ZnO-volcanics composites (ZVCs) were prepared via physical adsorption process. The morphology and structure of ZnO/ ZnO-volcanics composites (ZVCs) samples were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM).BET surface areas of the catalysts were determined by N2 adsorption (BET). According the data of XRD, the average grain size of ZnO is 15.1 nm consistent with the result observed by TEM (16.3 nm). Photocatalytic performance of ZnO and ZVCs were carried out in sprinkling photocatalytic reactor, with methylene blue (MB) as pollutants model. Decolorization rate is select as the evaluation parameters for the degradation effect. The effect of catalyst dosage, MB initial concentration, calcination temperature and pH on the degradation efficiency have been investigated. The MB degradation efficiency was 99.2% when the concentration of MB, the ZVCs, the pH and the calcination temperature were 10 mg/L, 20 g/L, and 10.03, 500 oC respectively. In the catalysts recycle experiments, the decolorization rate of MB using ZVCs is 90.2% after utilization for six times, overwhelmingly higher than that of ZnO (22.6%), indicating immobilization is efficient.


2013 ◽  
Vol 16 (2) ◽  
pp. 097-101
Author(s):  
Delia Gligor ◽  
Liviu Cosmin Cotet ◽  
Virginia Danciu

Iron doped carbon aerogels have been prepared by sol-gel polymerization of potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde followed by an ion-exchange process between K+ doped wet gel and Fe(II) or Fe(III) ion aqueous solutions. The resulted Fe(II) or Fe(III) doped gels have been dried in supercritical conditions with liquid CO2 and then pyrolyzed in high temperature resulting two types of iron doped carbon aerogels. These aerogels were morpho-structural investigated by using BET method, transmission electron microscopy, X-ray diffraction and elemental analysis. Also, these iron doped carbon aerogels (CAD-Fe(2+) and CAD-Fe(3+)) were tested for realization of modified carbon paste electrodes. CAD-Fe(2+) aerogel showed better electrochemical activity than CAD-Fe(3+) and also a good electrocatalytic activity towards H2O2 reduction (expressed by an electrocatalytic efficiency of 404% measured at – 500 mV vs. SCE).


2020 ◽  
Vol 12 (6) ◽  
pp. 810-814 ◽  
Author(s):  
Xiao-Lei Song ◽  
Yi-Lin Wu ◽  
Si-Ran Zhang ◽  
Zhi Chen ◽  
Yong-Gui Li

Multi-structured NdFe2O4 magnetic nanoparticles (NPs) were successfully prepared at different reaction times through a convenient solvothermal method. The microstructure and elemental composition of the NPs were characterized using powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) technique. An energy dispersive spectrometer (EDS) was connected to a scanning electron microscope to determine the weight and atomic percent of the prepared products. Subsequently, high-resolution transmission electron microscopy (HR/TEM) and TEM were performed at 3, 7, 11, and 15 h to elucidate the synthetic mechanism of the rare-earth element Nd doped in Fe3O4. The magnetic activities of the NPs were evaluated using a vibrating sample magnetometer (VSM). XRD, EDS, and XPS analyses show that Nd was successfully doped into Fe3O4 without breaking its crystal structure. Procedural single-crystal nanosheets and final spherical particles of NdFe2O4 were verified by TEM. The magnetic parameters of the products were further analyzed using the VSM.


NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550002 ◽  
Author(s):  
Shan-Jun Chen ◽  
Yan Chen ◽  
Song Li ◽  
Yang-En Wang ◽  
Hui Zeng ◽  
...  

Metallic nanopowders have an increasing application in magnetic materials, catalysts and chemical and metallic industries. In this research, a novel bulk synthesis method for preparing high pure intermetallic Fe 3 Al nanoparticles was developed by flow-levitation (FL) method. The Fe and Al vapors ascending from the high-temperature levitated droplet were condensed by cryogenic argon gas under atmospheric pressure. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) were used to identify and characterize the prepared nanopowders exhibiting a Fe 3 Al phase. Measurement of transmission electron microscopy (TEM) indicated that the Fe 3 Al particles are nearly spherical, and the particle size of the compound ranges from 10 nm to 200 nm in diameter. The chemical composition of the nanoparticles were determined with energy dispersive spectrometer. The magnetic properties of the nanopowder indicate that Fe 3 Al intermetallic compound is a soft magnet at room temperature, with coercivity of 24.2 Oe and saturation magnetization of 173.2 emu/g. The production rate of Fe 3 Al nanoparticles was estimated to be about 4 g/h in a continuous manner, by using the FL method. This method has great potential in mass production of Fe 3 Al nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document