Characterization of PCL/HA Composite Scaffolds for Bone Tissue Engineering

2007 ◽  
Vol 342-343 ◽  
pp. 109-112 ◽  
Author(s):  
Yong Taek Hyun ◽  
Seung Eon Kim ◽  
S.J. Heo ◽  
Jung Woog Shin

Porous and bioactive composite scaffolds based on poly ε-caprolactone(PCL) and hydroxyapatite(HA) were successfully fabricated by solvent casting and salt leaching method. The scaffolds have interconnected pore structure with pore size ranging from 10μm to 500μm. The pore size of PCL scaffold and PCL/HA scaffold were similar to that of the salt particles. The pore walls became thick and the small pores on the surface of macropores were formed as the HA increased. MTT assay showed that HA content did not affect initial cell attachment in both PCL scaffolds and PCL/HA scaffolds. The osteoblasts proliferated in both scaffolds, but the cell number was higher in the PCL/HA composite scaffolds. It was found that the incorporation of hydroxyapatite enhances bone cell proliferation rather than initial cell attachment in PCL/HA composite scaffolds. The results suggest that the PCL/HA composite scaffolds have a potential for the bone tissue engineering applications.

Author(s):  
Shivaji Kashte ◽  
Gajanan Arbade ◽  
R.K. Sharma ◽  
Sachin Kadam

In the bone tissue engineering composite scaffolds with osteogenic potential are emerging as the new tool. Here, we investigated the graphene (GP), graphene oxide (GO) andCissusquadrangularis(CQ) callus extract for their spontaneous osteoinductive potential. Electrospun poly ε-caprolactone (PCL) sheets were painted with varying combination GP, GO and CQ solutions as ink. The prepared PCL-GO, PCL-GO-CQ, PCL-GP and PCL-GP-CQ scaffolds were characterized for their physical, mechanical and biological properties. Addition of GO, GP, GO-CQ and GP-CQ to PCL enhanced roughness, wettability, Yield strength and tensile strength, biocompatibility .significantly. Presence of GO and CQ in PCL-GO-CQ scaffolds, while GP and CQ in PCL-GP-CQ scaffolds showed synergistic effect on the biocompatibility, Cell attachment,cell proliferation of human umbilical Wharton’s jelly derived mesenchymal stem cells (hUCMSCs) and their differentiation into osteoblasts by 21stday in culture without osteogenic differentiation media or any growth factors. Same is confirmed by the Alizarin red S staining and Von kossa staining. The combination of PCL-GO-CQ scaffold prepared by novel paint method was found to be the most potential in bone tissue engineering.


2018 ◽  
Vol 33 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Jingjing Du ◽  
Shuchun Gan ◽  
Qihao Bian ◽  
Duhan Fu ◽  
Yan Wei ◽  
...  

In this study, novel porous scaffolds containing hydroxyapatite and β-cyclodextrin-based polyurethane were first successfully fabricated by polymerizing β-cyclodextrin with hexamethylene diisocyanate and hydroxyapatite in situ for bone tissue engineering. The physicochemical and mechanical properties as well as cytocompatibility of porous scaffolds were investigated. The results showed that polyurethane reinforced with hydroxyapatite composites had cancellous bone-like porous structure. The mechanical strength of the scaffolds increased with increasing the hydroxyapatite content in scaffolds. Synthesized scaffolds (PU1, PUHA1, PU2, and PUHA2) presented compressive strength values of 0.87 ± 0.24 MPa, 1.81 ± 0.10 MPa, 6.16 ± 0.89 MPa, and 12.95 ± 2.05 MPa, respectively. The pore size and porosity of these scaffolds were suitable for bone regeneration. Cytocompatibility of composite scaffolds was proven via favorable interactions with MC3T3-E1 cells. The addition of hydroxyapatite into CD-based polyurethane scaffolds improved cell attachment, well-spread morphology, and higher proliferation. The hydroxyapatite-polyurethane scaffolds have the potential to be applied in bone repair and regeneration.


2007 ◽  
Vol 342-343 ◽  
pp. 77-80
Author(s):  
Seung Eon Kim ◽  
Yong Taek Hyun ◽  
Dong June Chung ◽  
S.J. Heo ◽  
Jung Woog Shin ◽  
...  

Poly ε-caprolactone(PCL)/hydroxyapatite(HA) composite scaffolds were fabricated by particulate leaching and freeze drying routes with different HA content. Porosity was decreased with HA addition, while mean pore size was maintained at around porogen size regardless of HA content. Compressive modulus was increased with increasing HA content. In this study, the optimum content of HA was around 40% in weight against PCL to obtain the highest compressive modulus with keeping porosity above 85%. HA apparently enhanced proliferation of osteoblast-like MG63 cells in PCL/HA composite scaffolds. Typical adhesion, migration and aggregation procedure of MG63 cells were found on PCL, while spreading morphology only was found on HA even at the early stage of adhesion without migration or aggregation.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Everest Akaraonye ◽  
Jan Filip ◽  
Mirka Safarikova ◽  
Vehid Salih ◽  
Tajalli Keshavarz ◽  
...  

The objective of this work was to investigate the potential application of Poly(3-hydroxybutyrate)/magnetic nanoparticles, P(3HB)/MNP, and Poly(3-hydroxybutyrate)/ferrofluid (P(3HB)/FF) nanocomposites as a smart material for bone tissue repair. The composite films, produced using conventional solvent casting technique, exhibited a good uniform dispersion of magnetic nanoparticles and ferrofluid and their aggregates within the P(3HB) matrix. The result of the static test performed on the samples showed that there was a 277% and 327% increase in Young’s modulus of the composite due to the incorporation of MNP and ferrofluid, respectively. The storage modulus of the P(3HB)MNP and P(3HB)/FF was found to have increased to 186% and 103%, respectively, when compared to neat P(3HB). The introduction of MNP and ferrofluid positively increased the crystallinity of the composite scaffolds which has been suggested to be useful in bone regeneration. The total amount of protein absorbed by the P(3HB)/MNP and P(3HB)/FF composite scaffolds also increased by 91% and 83%, respectively, with respect to neat P(3HB). Cell attachment and proliferation were found to be optimal on the P(HB)/MNP and P(3HB)/FF composites compared to the tissue culture plate (TCP) and neat P(3HB), indicating a highly compatible surface for the adhesion and proliferation of the MG-63 cells. Overall, this work confirmed the potential of using P(3HB)/MNP and P(3HB)/FF composite scaffolds in bone tissue engineering.


2018 ◽  
Vol 4 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Jasmin Hum ◽  
Shiva Naseri ◽  
Aldo R. Boccaccini

Abstract The present study has focused on the development of new composite scaffolds based on the combination of zein with bioactive glass for the application in bone tissue engineering. Porous polymeric matrices were produced by the salt leaching technique. By incorporating 45S5 bioactive glass particles the lack of bioactivity can be remedied. However, the addition of bioactive glass is influencing the plasticization behavior of the zein matrix during the salt leaching which negatively affects the compression strength as well as the degradation behavior. This paper describes the process during leaching and explains the different behavior of zein with and without the presence of bioactive glass


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Sign in / Sign up

Export Citation Format

Share Document