Herbally Painted Biofunctional Scaffolds with Improved Osteoinductivity for Bone Tissue Engineering

Author(s):  
Shivaji Kashte ◽  
Gajanan Arbade ◽  
R.K. Sharma ◽  
Sachin Kadam

In the bone tissue engineering composite scaffolds with osteogenic potential are emerging as the new tool. Here, we investigated the graphene (GP), graphene oxide (GO) andCissusquadrangularis(CQ) callus extract for their spontaneous osteoinductive potential. Electrospun poly ε-caprolactone (PCL) sheets were painted with varying combination GP, GO and CQ solutions as ink. The prepared PCL-GO, PCL-GO-CQ, PCL-GP and PCL-GP-CQ scaffolds were characterized for their physical, mechanical and biological properties. Addition of GO, GP, GO-CQ and GP-CQ to PCL enhanced roughness, wettability, Yield strength and tensile strength, biocompatibility .significantly. Presence of GO and CQ in PCL-GO-CQ scaffolds, while GP and CQ in PCL-GP-CQ scaffolds showed synergistic effect on the biocompatibility, Cell attachment,cell proliferation of human umbilical Wharton’s jelly derived mesenchymal stem cells (hUCMSCs) and their differentiation into osteoblasts by 21stday in culture without osteogenic differentiation media or any growth factors. Same is confirmed by the Alizarin red S staining and Von kossa staining. The combination of PCL-GO-CQ scaffold prepared by novel paint method was found to be the most potential in bone tissue engineering.

2014 ◽  
Vol 86 (12) ◽  
pp. 1911-1922 ◽  
Author(s):  
Hyo Seung Park ◽  
Su Yeon Lee ◽  
Hyunsik Yoon ◽  
Insup Noh

Abstract Design of micro-patterning of hydrogel is of critical importance in both understanding cellular behaviors and mimicking controlled microenvironments and architectures of diverse well-organized tissues. After micro-patterning of hyaluronic acid (HA) hydrogel on a poly(dimethyl siloxane) substrate, its physical and biological properties have been compared with those of a non-patterned hydrogel for its possible applications in bone tissue engineering. The micro-patterned morphologies of HA hydrogel in both swollen and dehydrated forms have been observed with light microscope and scanning electron microscope, respectively, before and after in vitro cell culture. When MC3T3 bone cells were in vitro cultured on both HA hydrogels, the micro-patterned one shows excellence in cell proliferation and lining for 7 days along the micro-pattern paths over those of the non-patterned one, which have shown less cell-adhesiveness. The cytotoxicity of the micro-patterned HA hydrogels was in vitro evaluated by the assays of MTT, BrdU and Neutral red. The viability and morphology of MC3T3 cells on both HA hydrogels were observed with a fluorescence microscope by the live & dead assay, where their viability was confirmed by staining of F-actin development. The results of their H&E staining showed that both micro-patterned and non-patterned hydrogels induced development of tissue regeneration as observed by cell attachment, proliferation, and survivability, but the micro-patterned one induced distinctive patterning of both better initial cells adhesion on the micro-patterns and subsequently development of their proliferation and extracellular matrix, which were considered as important characteristics in their applications to tissue engineering.


2007 ◽  
Vol 342-343 ◽  
pp. 109-112 ◽  
Author(s):  
Yong Taek Hyun ◽  
Seung Eon Kim ◽  
S.J. Heo ◽  
Jung Woog Shin

Porous and bioactive composite scaffolds based on poly ε-caprolactone(PCL) and hydroxyapatite(HA) were successfully fabricated by solvent casting and salt leaching method. The scaffolds have interconnected pore structure with pore size ranging from 10μm to 500μm. The pore size of PCL scaffold and PCL/HA scaffold were similar to that of the salt particles. The pore walls became thick and the small pores on the surface of macropores were formed as the HA increased. MTT assay showed that HA content did not affect initial cell attachment in both PCL scaffolds and PCL/HA scaffolds. The osteoblasts proliferated in both scaffolds, but the cell number was higher in the PCL/HA composite scaffolds. It was found that the incorporation of hydroxyapatite enhances bone cell proliferation rather than initial cell attachment in PCL/HA composite scaffolds. The results suggest that the PCL/HA composite scaffolds have a potential for the bone tissue engineering applications.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1430 ◽  
Author(s):  
Somasundaram Prasadh ◽  
Santhosh Suresh ◽  
Raymond Wong

Scaffolds are physical substrates for cell attachments, proliferation, and differentiation, ultimately leading to tissue regeneration. Current literature validates tissue engineering as an emerging tool for bone regeneration. Three-dimensionally printed natural and synthetic biomaterials have been traditionally used for tissue engineering. In recent times, graphene and its derivatives are potentially employed for constructing bone tissue engineering scaffolds because of their osteogenic and regenerative properties. Graphene is a synthetic atomic layer of graphite with SP2 bonded carbon atoms that are arranged in a honeycomb lattice structure. Graphene can be combined with natural and synthetic biomaterials to enhance the osteogenic potential and mechanical strength of tissue engineering scaffolds. The objective of this review is to focus on the most recent studies that attempted to explore the salient features of graphene and its derivatives. Perhaps, a thorough understanding of the material science can potentiate researchers to use this novel substitute to enhance the osteogenic and biological properties of scaffold materials that are routinely used for bone tissue engineering.


Author(s):  
Maxime Leblanc Latour ◽  
Maryam Tarar ◽  
Ryan J. Hickey ◽  
Charles M. Cuerrier ◽  
Isabelle Catelas ◽  
...  

AbstractPlant-derived cellulose biomaterials have recently been utilized in several tissue engineering applications. Naturally-derived cellulose scaffolds have been shown to be highly biocompatible in vivo, possess structural features of relevance to several tissues, as well as support mammalian cell invasion and proliferation. Recent work utilizing decellularized apple hypanthium tissue has shown that it possesses a pore size and properties similar to trabecular bone. In the present study, we examined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE). Confocal microscopy revealed that the scaffolds had a suitable pore size for BTE applications. To analyze their in vitro mineralization potential, MC3T3-E1 pre-osteoblasts were seeded in either bare cellulose scaffolds or in composite scaffolds composed of cellulose and collagen I. Following chemically-induced differentiation, scaffolds were mechanically tested and evaluated for mineralization. The Young’s modulus of both types of scaffolds significantly increased after cell differentiation. Alkaline phosphatase and Alizarin Red staining further highlighted the osteogenic potential of the scaffolds. Histological sectioning of the constructs revealed complete invasion by the cells and mineralization throughout the entire constructs. Finally, scanning electron microscopy demonstrated the presence of mineral aggregates deposited on the scaffolds after differentiation, and energy-dispersive spectroscopy confirmed the presence of phosphate and calcium. In summary, our results indicate that plant-derived cellulose is a promising scaffold candidate for bone tissue engineering applications.


2018 ◽  
Vol 33 (3) ◽  
pp. 402-409 ◽  
Author(s):  
Jingjing Du ◽  
Shuchun Gan ◽  
Qihao Bian ◽  
Duhan Fu ◽  
Yan Wei ◽  
...  

In this study, novel porous scaffolds containing hydroxyapatite and β-cyclodextrin-based polyurethane were first successfully fabricated by polymerizing β-cyclodextrin with hexamethylene diisocyanate and hydroxyapatite in situ for bone tissue engineering. The physicochemical and mechanical properties as well as cytocompatibility of porous scaffolds were investigated. The results showed that polyurethane reinforced with hydroxyapatite composites had cancellous bone-like porous structure. The mechanical strength of the scaffolds increased with increasing the hydroxyapatite content in scaffolds. Synthesized scaffolds (PU1, PUHA1, PU2, and PUHA2) presented compressive strength values of 0.87 ± 0.24 MPa, 1.81 ± 0.10 MPa, 6.16 ± 0.89 MPa, and 12.95 ± 2.05 MPa, respectively. The pore size and porosity of these scaffolds were suitable for bone regeneration. Cytocompatibility of composite scaffolds was proven via favorable interactions with MC3T3-E1 cells. The addition of hydroxyapatite into CD-based polyurethane scaffolds improved cell attachment, well-spread morphology, and higher proliferation. The hydroxyapatite-polyurethane scaffolds have the potential to be applied in bone repair and regeneration.


2019 ◽  
Vol 819 ◽  
pp. 9-14 ◽  
Author(s):  
Kanharit Wongsawichai ◽  
Arada Kingkaew ◽  
Aninart Pariyaisut ◽  
Supang Khondee

Bone tissue engineering is an alternative approach to generate bone using biomaterials and cells. Hydroxyapatite (HA) has good biocompatibility, osteoinductivity, and osteoconductivity. However, it has limited utility due to poor mechanical properties and slow degradation rate. To improve mechanical properties and to modify degradation profile, hydroxyapatite was tethered in chitosan (CS) and carboxymethyl cellulose (CMC) complex. Gelatin was incorporated to promote cell attachment and polyvinyl alcohol (PVA) was used to improve mechanical strength of this scaffold. The physico-mechanical and biological properties of these scaffolds were investigated. Fourier transform infrared (FTIR) analysis and X-ray diffraction (XRD) showed the incorporation of hydroxyapatite in polymer matrix. The scaffolds had density, compressive strength, and Young’s modulus in the range of 0.24-0.30 g/cm3, 0.028-0.035 MPa, 0.178-0.560 MPa, respectively. The scaffolds had porosity of 69-91 percent. Higher content of PVA decreased porosity of scaffolds. Scanning electron microscope showed porous microstructure with pore size in the range of 60-183 μm. In vitro test on MC3T3-E1 preosteoblast cells showed negligible cytotoxicity of scaffolds. The data suggested that HA/CS/CMC/gelatin/PVA scaffold has potential applications in bone tissue engineering.


2020 ◽  
Vol 21 (20) ◽  
pp. 7692 ◽  
Author(s):  
Tobias Grossner ◽  
Uwe Haberkorn ◽  
Tobias Gotterbarm

In bone tissue engineering, there is a constant need to design new methods for promoting in vitro osteogenic differentiation. Consequently, there is a strong demand for fast, effective and reliable methods to track and quantify osteogenesis in vitro. In this study, we used the radiopharmacon fluorine-18 (18F) to evaluate the amount of hydroxylapatite produced by mesenchymal stem cells (MSCs) in a monolayer cell culture in vitro. The hydroxylapatite bound tracer was evaluated using µ-positron emission tomography (µ-PET) scanning and activimeter analysis. It was therefore possible to determine the amount of synthesized mineral and thus to conclude the osteogenic potential of the cells. A Student’s t-test revealed a highly significant difference regarding tracer uptake between the osteogenic group and the corresponding control group (µ-PET p = 0.043; activimeter analysis p = 0.012). This tracer uptake showed a highly significant correlation with the gold standard of quantitative Alizarin Red staining (ARS) (r2 = 0.86) as well as with the absolute calcium content detected by inductively coupled plasma mass spectrometry (r2 = 0.81). The results showed that 18F labeling is a novel method to prove and quantify hydroxyapatite content in MSC monolayer cultures. The mineral layer remains intact for further analysis. This non-destructive in vitro method can be used to rapidly investigate bone tissue engineering strategies in terms of hydroxylapatite production, and could therefore accelerate the process of implementing new strategies in clinical practice.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3909
Author(s):  
Sara Simorgh ◽  
Peiman Brouki Milan ◽  
Maryam Saadatmand ◽  
Zohreh Bagher ◽  
Mazaher Gholipourmalekabadi ◽  
...  

For bone tissue engineering, stem cell-based therapy has become a promising option. Recently, cell transplantation supported by polymeric carriers has been increasingly evaluated. Herein, we encapsulated human olfactory ectomesenchymal stem cells (OE-MSC) in the collagen hydrogel system, and their osteogenic potential was assessed in vitro and in vivo conditions. Collagen type I was composed of four different concentrations of (4 mg/mL, 5 mg/mL, 6 mg/mL, 7 mg/mL). SDS-Page, FTIR, rheologic test, resazurin assay, live/dead assay, and SEM were used to characterize collagen hydrogels. OE-MSCs encapsulated in the optimum concentration of collagen hydrogel and transplanted in rat calvarial defects. The tissue samples were harvested after 4- and 8-weeks post-transplantation and assessed by optical imaging, micro CT, and H&E staining methods. The highest porosity and biocompatibility were confirmed in all scaffolds. The collagen hydrogel with 7 mg/mL concentration was presented as optimal mechanical properties close to the naïve bone. Furthermore, the same concentration illustrated high osteogenic differentiation confirmed by real-time PCR and alizarin red S methods. Bone healing has significantly occurred in defects treated with OE-MSCs encapsulated hydrogels in vivo. As a result, OE-MSCs with suitable carriers could be used as an appropriate cell source to address clinical bone complications.


Sign in / Sign up

Export Citation Format

Share Document