A Stage Based on Voice Coil Motor with High Speed and Long Range for Laser Micro/Nano Fabrication

2007 ◽  
Vol 345-346 ◽  
pp. 757-760 ◽  
Author(s):  
Ki Hyun Kim ◽  
Dae Gab Gweon ◽  
Hyun Soo Jung ◽  
Soo Hun Lee ◽  
Min Sung Hong ◽  
...  

Design of design of X-Y-Theta fine stage using VCM (voice coil motor) is presented in this paper. This fine stage is combined with linear DC motor. Long range, high speed and high precision of the stage is obtained by using dual servo control for laser micro/nano machining. A novel structure of VCM for the fine stage is proposed. The fine stage can have 3 DOF(X-Y-Theta) motion by four VCM actuators which are located on the same plane. The X-Y-Theta fine stage is designed to have high acceleration for high throughput. Based on the design, the stage is fabricated. The designed stage has the acceleration of 5m/s2 with 45kg total mass. In addition, this actuator is feedback controlled using HP laser interferometer. The reaction force between the coarse and fine stage of the dual servo is compensated by force compensator.

Author(s):  
Ki Hyun Kim ◽  
Dae Gab Gweon ◽  
Hyun Soo Jung ◽  
Soo Hun Lee ◽  
Min Sung Hong ◽  
...  

2013 ◽  
Vol 303-306 ◽  
pp. 1635-1640
Author(s):  
Xi Qing Jia ◽  
Shou Bin Liu

A two-degrees-of-freedom voice coil motor and its control system are proposed for linear and rotary motions with high speed. This VCM consists of two individual motion parts driven by two separated DSP embedded controllers. For servo control of the VCM, an improved PID control algorithm is adopted. The performance of the control algorithm is evaluated under actual environment. When the targets of position and angle are set at 5mm and 15°, the time response shows 48ms and 70.4ms settling time with 5μm and 3’ steady state error without overshoot. Settling time is reduced to 36% as compared to that of original PID controller.


Author(s):  
Wei-Hsun Tai ◽  
Ray-Hsien Tang ◽  
Chen-Fu Huang ◽  
Shin-Liang Lo ◽  
Yu-Chi Sung ◽  
...  

The study aimed to investigate the acute effects of handheld loading on standing broad jump (SBJ) performance and biomechanics. Fifteen youth male athletes (mean age: 14.7 ± 0.9 years; body mass: 59.3 ± 8.0 kg; height: 1.73 ± 0.07 m) volunteered to participate in the study. Participants were assigned to perform SBJ with and without 4 kg dumbbells in a random order. Kinematic and kinetic data were collected using 10 infrared high-speed motion-capture cameras at a 250 Hz sampling rate and two force platforms at a 1000 Hz sampling rate. A paired t-test was applied to all variables to determine the significance between loading and unloading SBJs. Horizontal distance (p < 0.001), take-off distance (p = 0.001), landing distance (p < 0.001), horizontal velocity of center of mass (CoM; p < 0.001), push time (p < 0.001), vertical impulse (p = 0.003), and peak horizontal and vertical ground reaction force (GRF; p < 0.001, p = 0.017) were significantly greater in loading SBJ than in unloading SBJ. The take-off vertical velocity of CoM (p = 0.001), take-off angle (p < 0.001), peak knee and hip velocity (p < 0.001, p = 0.007), peak ankle and hip moment (p = 0.006, p = 0.011), and peak hip power (p = 0.014) were significantly greater in unloading SBJ than in loading SBJ. Conclusions: Acute enhancement in SBJ performance was observed with handheld loading. The present findings contribute to the understanding of biomechanical differences in SBJ performance with handheld loading and are highly applicable to strength and conditioning training for athletes.


2012 ◽  
Vol 490-495 ◽  
pp. 456-459
Author(s):  
Jun Han ◽  
Rui Li Chang

Open Computer Numerical Control system (Open CNC) based on PC and the Windows operating system has been a major developing direction and a research focus of the current numerical control technology. At present, there have been all kinds of the Open CNC systems with high-speed and precision servo control boards, but they are too expensive. Therefore, developing an economical and practical motion controller is great significant for middle and small numerical control system


1981 ◽  
Vol 93 (4) ◽  
pp. 39-48
Author(s):  
SIDNEY FELDMAN ◽  
GEORGE G. BARTON

2006 ◽  
Vol 304-305 ◽  
pp. 492-496 ◽  
Author(s):  
Yu Hou Wu ◽  
L.X. Zhang ◽  
Ke Zhang ◽  
Song Hua Li

As one of the modern manufacture technology, high-speed precision grinding takes an important part in the modern manufacture field. With the development of the technology on high-speed spindle unit, linear precision high-speed feed unit, manufacture of grinding wheel, measurement etc, a great deal of research achievements make it possible for high-speed precision grinding. In this paper, using PMAC (Programmable Multi-Axis Controller)—PC as the central controller, a new kind of high-speed precision grinder is designed and manufactured. The servo control technology of linear motor is investigated. The dynamic performances of the machine are analyzed according to the experimental results. Elliptical workpieces have been machined with this new high-speed precision grinder. Based on these research results, a very helpful approach is provided for the precision grinding of complicated workpieces, and these results promote the development of high speed grinding too.


Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


2008 ◽  
Vol 105 (4) ◽  
pp. 1262-1273 ◽  
Author(s):  
Andrew M. Carroll ◽  
David V. Lee ◽  
Andrew A. Biewener

We investigate how the biarticular long head and monoarticular lateral head of the triceps brachii function in goats ( Capra hircus) during jumping and landing. Elbow moment and work were measured from high-speed video and ground reaction force (GRF) recordings. Muscle activation and strain were measured via electromyography and sonomicrometry, and muscle stress was estimated from elbow moment and by partitioning stress based on its relative strain rate. Elbow joint and muscle function were compared among three types of limb usage: jump take-off (lead limb), the step prior to jump take-off (lag limb), and landing. We predicted that the strain and work patterns in the monoarticular lateral head would follow the kinematics and work of the elbow more closely than would those of the biarticular long head. In general this prediction was supported. For instance, the lateral head stretched (5 ± 2%; mean ± SE) in the lead and lag limbs to absorb work during elbow flexion and joint work absorption, while the long head shortened (−7 ± 1%) to produce work. During elbow extension, both muscles shortened by similar amounts (−10 ± 2% long; −13 ± 4% lateral) in the lead limb to produce work. Both triceps heads functioned similarly in landing, stretching (13 ± 3% in the long head and 19 ± 5% in the lateral) to absorb energy. In general, the long head functioned to produce power at the shoulder and elbow, while the lateral head functioned to resist elbow flexion and absorb work, demonstrating that functional diversification can arise between mono- and biarticular muscle agonists operating at the same joint.


2021 ◽  
Vol 939 (1) ◽  
pp. 012024
Author(s):  
A Abdukarimov ◽  
I Saidakulov

Abstract This article discusses the dynamics of a ten-link tooth-lever differential transmission mechanism. The force analysis of the transmission mechanism is given in order to find the dependence for determining the reaction in kinematic pairs and the balancing moment of the pair of forces and to show some features of the tooth-lever transmission mechanism. The force calculation was carried out taking into account the accelerated movement of links since their acceleration in modern high-speed machines is very significant. To obtain a more accurate concept of the external forces and moments loading the transmission mechanism in the accelerated movement of the links, the dynamics of the transient process of roller technological machines was considered. Cases of feeding the processed material were considered both from the side of the intermediate gears and from the side opposite to the parasitic gears. Dependencies were obtained to determine the force characteristics of this mechanism. Cases of pressure unloading and overloading on the processed material from the side of the free shaft, depending on the location of the transmission mechanism are shown. The dependence of the reaction force of intermediate gears on their own axes of rotation on the angle between the levers is shown. With an increase in the angle between the levers, the reaction of the intermediate gears on the axis of rotation increases.


Sign in / Sign up

Export Citation Format

Share Document