Consolidation and Properties of Tungsten Carbide Target with Low Cobalt Content by Hot-Press Sintering

2007 ◽  
Vol 351 ◽  
pp. 98-102
Author(s):  
Gang Qin Shao ◽  
Z. Xiong ◽  
T.G. Wang ◽  
Xiao Liang Shi ◽  
Xing Long Duan

Tungsten carbide (WC) targets with low cobalt (Co) content (0.1 - 0.2 wt.%) were prepared by hot-press sintering at 1700°C for 60 minutes in argon, from element starting powders of tungsten, cobalt and carbon. Results show that the as-fabricated targets yield relatively high relative density above 99% and high HRA above 92. WC with low Co content is formed easily than pure WC. The hot-press sintering process, while element starting powders are used, is an in-situ reaction technique for accelerating the WC’s diffusion rate to obtain a dense sintered body.

2007 ◽  
Vol 336-338 ◽  
pp. 2363-2365
Author(s):  
You Feng Zhang ◽  
Yu Zhou ◽  
De Chang Jia ◽  
Qing Chang Meng

Effects of different sintering methods such as pressureless sintering and hot press sintering on relative density and microstructure of the Al2O3p/LiTaO3 (ALT) composite ceramics were investigated to obtain a preferable sintering process. Relative densities of all ALT composites are below 90% when sintered with the cold isostatical pressing followed by pressureless sintering at temperatures of 1250 to 1350°C. The relative densities and microstructure of ALT composite ceramics with the hot press sintering process in a N2 atmosphere at 1150 and 1300°C were investigated. The relative density of ALT composite hot pressed at 1150°C is only 77%, and almost theoretical density at 1300°C. This indicates that sintering pressure plays an important role in the densification of ALT composite ceramics in temperature range of 1150 to 1350°C. Investigation on morphologies of the composites shows that the Al2O3 particles distributed along grain boundaries of LiTaO3, which leads to a fine-grained microstructure in the ALT composite ceramics


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2007 ◽  
Vol 546-549 ◽  
pp. 2179-2182 ◽  
Author(s):  
Ling Bai ◽  
Xing Yu Zhao ◽  
Chang Chun Ge

Sintering of the Self-Propagating High-Temperature Synthesis (SHS) of β-Si3N4 powder with 6.67 wt.% Y2O3 and 3.33 wt.% Al2O3 as sintering additives has been emphatically investigated using hot-press sintering process. The relative density of hot-pressed β-Si3N4 reached near to the full densification (99.43%) at 1700°C. The similar micrographs with self-reinforcing rod-like β-Si3N4 grains forming an interlocking structure were observed. The better mechanical properties of hot-pressed Si3N4, such as the hardness (16.73GPa), fracture toughness (5.72 MPa·m1/2) and bending strength (611.72MPa) values, were obtained at 1700°C. The results indicate that good sinter ability can be obtained with the cheaply SHS of silicon nitride powder for preparing silicon nitride materials, which will make the cost of silicon nitride materials lowered.


2014 ◽  
Vol 1030-1032 ◽  
pp. 280-283
Author(s):  
Li Li Tang ◽  
Ming Hu ◽  
Lin Shan ◽  
Yun Long Zhang

Electroless plating technology was applied in order to improve the poor wettability between copper and SiC. β-SiC(w+p)/Cu composites were fabricated by hot-press sintering. The influences of SiC volume fraction on microstructure, relative density and wear propertity were researched in detail. It turned out that SiC particles and wiskers distributed in Cu matrix homogeneously. And with the increase of SiC volume fraction, the relative density and friction coefficient were reduced respectively, the wear-resistant improved greatly.


2014 ◽  
Vol 602-603 ◽  
pp. 488-493 ◽  
Author(s):  
Bao Xin Zhu ◽  
Yu Jun Zhang ◽  
Hong Sheng Wang ◽  
Chong Hai Wang ◽  
Shuang Shuang Yue

SiC-TiB2/B4C composites were fabricated by hot-press sintering B4C with silicon powder and tetrabutyl titanate (precursor of TiO2) as sintering and reinforcement agents. The influence of additives on hot-press sintering densification, microstructure and properties of composites were studied. The results showed that TiB2 and SiC generated by chemical reaction between additives and B4C matrix reinforced the sintering activity of the mixed powders and accelerated significantly the hot-press sintering densification rate of B4C from 1200 °C to 1700 °C. According to the SEM observation, the second phase of TiB2 and SiC particles synthetized in situ sited along the grain boundaries of B4C, meanwhile, those SiC particles of nanoscale size embedded into the B4C grains, and thereby, intra/inter-type ceramics formed. The maximum relative density of 98.1% was obtained with 9wt.% TiO2. The typical valus of Vickers hardness, bending strength and fracture toughness can reach 26.7 GPa, 580 MPa and 5.0 MPam1/2, respectively.


2006 ◽  
Vol 317-318 ◽  
pp. 653-656 ◽  
Author(s):  
Jun Yoshikawa ◽  
Yuji Katsuda ◽  
Naohito Yamada ◽  
Hiroaki Sakai

Electrically conductive AlN ceramics were fabricated by the addition of a small amount of B4C and sintering aid, and hot-press sintering in a nitrogen atmosphere. The electrical resistivity of AlN ceramics decreased remarkably from 1014 cm to the range of 100 to 102 cm by a minimum of 2.3 wt% of B4C addition. This resistivity decrease was caused by forming three-dimensional networks composed of boron carbonitride (B-C-N) platelets synthesized during sintering. To produce the networks of B-C-N platelets, two-step sintering with a heat-treatment step at 1600°C before the densification step at 2000°C was needed.


Sign in / Sign up

Export Citation Format

Share Document