Mechanical Properties of Coil Coating Evaluated with Dynamic Mechanical Analysis in Daul Cantilever

2007 ◽  
Vol 353-358 ◽  
pp. 1729-1732 ◽  
Author(s):  
Lei Chen ◽  
Hong Liang Pan

The storage modulus, loss modulus, loss tangent (tanδ), stress and strain have been determined for painted steel specimens by dynamic mechanical analysis (DMA) operated in Dual Cantilever mode. Analysis of the composite system enabled the elastic modulus of the paint layer to be calculated and the result can be useful to analyze the mechanical properties of the coil coating. The calculation was found to be very sensitive to the geometry (especially thickness of the substrate and coating) and properties of the substrate and coating, leading to considerable variability in the calculated coating modulus. The DMA method was successful in detecting the glass transition temperature (Tg) as a peak in the tanδ curve. The value of Tg is sensitive to the preparation conditions (e.g. curing temperature) and composition of the paint. The results show that DMA in Dual Cantilever can be useful as a characterization tool for painted steel.

2013 ◽  
Vol 838-841 ◽  
pp. 2227-2230
Author(s):  
Chun Gui Du ◽  
Ren Li ◽  
Zhe Wang ◽  
Hong Wei Yu ◽  
Chun De Jin

The dynamic mechanical properties of radial and chordwise bamboo pieces were tested by dynamic mechanical analysis (DMA). The results show that the storage modulus and loss modulus and tangent delta of chordwise direction were all larger than the radial direction of bamboo; the peak of glass transition temperature of chordwise direction is high than the radial direction, and their sizes are very close; dynamic mechanical analysis can provide a reference for the optimization applicable environment temperature of curtain plybamboo.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ashley Amanda Freeman ◽  
Judith Lee ◽  
Cecil Krarup Andersen ◽  
Naoki Fujisawa ◽  
Michał Łukomski ◽  
...  

AbstractNanoindentation and dynamic mechanical analysis were used to measure changes in the surface and bulk mechanical properties of Winsor & Newton Yellow Ochre oil paint films following exposure to deionized water, aliphatic mineral spirits (Shellsol D40™), and D5 silicone solvent (decamethylcyclopentasiloxane). Yellow ochre paint films were exposed to the selected solvents by 24-h immersion, and sponge-cleaning. 24-h immersion in deionised water and Shellsol D40 caused measurable changes to bulk and surface mechanical properties. However, there were no measurable changes to the bulk or surface mechanical properties following sponge cleaning.


2017 ◽  
Vol 54 (3) ◽  
pp. 543-545 ◽  
Author(s):  
Yusrina Mat Daud ◽  
Kamarudin Hussin ◽  
Azlin Fazlina Osman ◽  
Che Mohd Ruzaidi Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Preparation epoxy based hybrid composites were involved kaolin geopolymer filler, organo-montmorillonite at 3phr by using high speed mechanical stirrer. A mechanical behaviour of neat epoxy, epoxy/organo-montmorillonite and its hybrid composites containing 1-8phr kaolin geopolymer filler was studied upon cyclic deformation (three-point flexion mode) as the temperature is varies. The analysis was determined by dynamic mechanical analysis (DMA) at frequency of 1.0Hz. The results then expressed in storage modulus (E�), loss modulus (E�) and damping factor (tan d) as function of temperature from 40 oC to 130oC. Overall results indicated that E�, E�� and Tg increased considerably by incorporating optimum 1phr kaolin geopolymer in epoxy organo-montmorillonite hybrid composites.


Author(s):  
Roja Esmaeeli ◽  
Haniph Aliniagerdroudbari ◽  
Seyed Reza Hashemi ◽  
Hammad Al-Shammari ◽  
Muapper Alhadri ◽  
...  

Abstract The quality of the collected data from a measurement system affects eventual decision making process. Therefore, the reliability of any measurement system is an important factor to be studied. Gauge repeatability and reproducibility (Gauge R&R) is the standard method to evaluate the measurement system and assess the adequacy of variation in the measurement data. Gauge R&R is a statistical tool which evaluates two main characteristics of the measurement system: repeatability and reproducibility. The Dynamic Mechanical Analysis (DMA) is a common measurement system for studying the dynamic mechanical properties of viscoelastic materials such as polymers. The newly developed High Frequency Dynamic Mechanical Analysis (HFDMA) is able to directly run the simple shear test at high frequencies without changing the specimen temperature. The complex shear modulus and damping factor of the viscoelastic materials are reported by the HFDMA system. In this study the uni-variable Gauge R&R study based on Analysis of Variance (ANOVA) is done on each measured characteristic of the HFDMA measurement system. The source of variations for each characteristic is distinguished. Then the multivariate Gauge R&R based on the Multivariate Analysis of Variance (MANOVA) is done and the percentage of multivariate Gauge R&R for the measurement with the multiple variables is reported. The results indicate that the HFDMA measurements are both repeatable and reproducible. Thus, the new HFDMA can be used as a measurement system to measure the mechanical properties of viscoelastic materials at high frequencies.


2019 ◽  
Vol 39 (6) ◽  
pp. 508-514
Author(s):  
Yannan He ◽  
Zhiqiang Yu

Abstract The thermal and dynamic mechanical properties of epoxy composites filled with zirconium diboride/nano-alumina (ZrB2/Al2O3) multiphase particles were investigated by means of differential scanning calorimetry, dynamic thermo-mechanical analysis, and numerical simulation. ZrB2/Al2O3 particles were surface organic functional modified by γ-glycidoxypropyltrimethoxysilane for the improvement of their dispersity in epoxy matrix. The results indicated that the curing exotherm of epoxy resin decreased significantly due to the addition of ZrB2/Al2O3 multiphase particles. In comparison to the composites filled with unmodified particles, the modified multiphase particles made the corresponding filling composites exhibit lower curing reaction heat, lower loss modulus, and higher storage modulus. Generally speaking, the composites filled with 5 wt% modified multiphase particles presented the best thermal stability and thermo-mechanical properties due to the better filler-matrix interfacial compatibility and the uniform dispersity of modified particles. Finite element analysis also suggested that the introduction of modified ZrB2/Al2O3 multiphase particles increased the stiffness of the corresponding composites.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1295
Author(s):  
Laura O’Donoghue ◽  
Md. Haque ◽  
Sean Hogan ◽  
Fathima Laffir ◽  
James O’Mahony ◽  
...  

The α-relaxation temperatures (Tα), derived from the storage and loss moduli using dynamic mechanical analysis (DMA), were compared to methods for stickiness and glass transition determination for a selection of model whey protein concentrate (WPC) powders with varying protein contents. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC), and stickiness behavior was characterized using a fluidization technique. For the lower protein powders (WPC 20 and 35), the mechanical Tα determined from the storage modulus of the DMA (Tα onset) were in good agreement with the fluidization results, whereas for higher protein powders (WPC 50 and 65), the fluidization results compared better to the loss modulus results of the DMA (Tα peak). This study demonstrates that DMA has the potential to be a useful technique to complement stickiness characterization of dairy powders by providing an increased understanding of the mechanisms of stickiness.


2018 ◽  
Vol 53 (1) ◽  
pp. 65-72 ◽  
Author(s):  
MK Gupta ◽  
Rohit Singh

In the present work, a novel physical treatment (PLA coating) of sisal fibres and its influence on the water absorption, static and dynamic mechanical properties of its composites has been presented. The treated sisal fibres were used consisted of alkali treatment and PLA coating to fabricate its polyester-based composites by hand lay-up technique keeping constant fibres content as 20 wt.% . Water absorption analysis was carried out in terms of water uptake (%), and sorption, diffusion and permeability coefficient. In addition, static properties were examined in terms of tensile, flexural and impact test, and dynamic mechanical analysis was performed in terms of storage modulus [Formula: see text], loss modulus [Formula: see text], damping [Formula: see text] and glass transition temperature [Formula: see text]. It was reported that the PLA-coated sisal composites showed the best performance in water absorption, mechanical and dynamic mechanical properties than pure sisal and alkali-treated sisal composites. There were 33%, 49%, 48%, and 27% improvement in water resistance, tensile strength, flexural strength and impact strength, respectively, of PLA-coated sisal composites as compared to that of pure sisal composite.


Sign in / Sign up

Export Citation Format

Share Document