Analysis of Influence Factors for the Contact Length between Wheel and Workpiece in Surface Grinding

2007 ◽  
Vol 359-360 ◽  
pp. 128-132 ◽  
Author(s):  
Cong Mao ◽  
Zhi Xiong Zhou ◽  
De Wang Zhou ◽  
Du Yi Gu

In order to understand the grinding mechanism and analyze the grinding operation, it is necessary to study the contact phenomena between wheel and workpiece during grinding operation. The contact length, the grinding temperature distribution within the contact zone, and the grinding forces are measured in-process by using Critical Contact State mode, thermocouple method, and 3-axis piezoelectric dynamometer, respectively. It is found that the grinding conditions and the properties of work material have effects on the contact length, moreover, the mechanism of which is discussed in this paper. The results show that the contact length significantly interacts with grinding force and grinding temperature in the grinding zone.

2012 ◽  
Vol 472-475 ◽  
pp. 927-931
Author(s):  
Xin Li Tian ◽  
Fu Qiang Li ◽  
Ya Tao Mao ◽  
Bao Guo Zhang ◽  
Jian Quan Wang

Introducing the grinding mechanism of axial creep-feed grinding ceramics with a single diamond grain. Establishing the simulation model of a single grain grinding engineering ceramics by axial creep-feed grinding and analyzing the simulation results of the grinding force in the X,Y,Z axis. Finally, the impacts of the wheel speed, axial feed rate and workpiece speed upon grinding forces were discussed by simulating the single diamond abrasive grinding process under different grinding conditions.


2011 ◽  
Vol 487 ◽  
pp. 34-38 ◽  
Author(s):  
Guo Giang Guo ◽  
X.H. Zheng ◽  
Z.Q. Liu ◽  
Qing Long An ◽  
Ming Chen

Experimental results of Ti-6-2-4-2S, Ti-6-4 and Ti-5-5-5-1-1 are detailed in this paper with conventional surface grinding using SiC abrasive under dry conditions. Measurements of grinding forces, surface topography and metallurgical structure of ground surface were taken to investigate the grinding mechanism of these materials. The results showed grinding force ratios to these materials were between 1.35 to 2.25 at all material remove rates, but the specific energy to Ti-5-5-5-1-1 and Ti-6-2-4-2S were little higher than Ti-6-4. Evaluation of ground surface topography indicated they were visually free of crack and burn. At the same grinding parameters, Ti-5-5-5-1-1 had the maximum depth of heat-affected zone because of its poor high temperature properties.


2011 ◽  
Vol 487 ◽  
pp. 140-144 ◽  
Author(s):  
Cong Mao ◽  
H.F. Zou ◽  
Z.X. Zhou

The grinding forces and grinding temperature were measured by using a 3-axis piezoelectric dynamometer and a thermocouple, respectively. The morphology and roughness of the ground surface were analyzed by using a scanning electron microscope (SEM) and a talysurf. It is found that the grinding parameters have great influence on the grinding temperature. Meanwhile, the down grinding has higher temperature than the up grinding. The relation among the grinding temperature, the morphology and the roughness of ground surface was discussed. It is found that when the grinding temperature is not high enough for the ground surface to appear obvious burn, the grinding temperature has little influence on the surface roughness.


2008 ◽  
Vol 389-390 ◽  
pp. 235-239
Author(s):  
Suo Xian Yuan ◽  
Dong Na Xie ◽  
Ya Dong Gong

Quick-point grinding is more advanced and more efficiency as a method of high and super-high speed grinding. Its main grinding properties are low grinding forces and temperature. Its basic characteristic is the axis of wheel and workpiece are not parallel and not contained by the same plane. That makes the geometrical property of the quick-point grinding different from conventional cylindrical grinding. This paper emphasizes particularly on the abrasive geometry analysis on the quick-point grinding. After founding a model, this paper has educed equivalent wheel diameter, maximum contact length, undeformed chip thickness and so on. In this paper the quick-point-grinding angle is made use of to find a model of grinding force and deduce an expressions.


2009 ◽  
Vol 626-627 ◽  
pp. 75-80 ◽  
Author(s):  
Jian Qiu ◽  
Ya Dong Gong ◽  
Yue Ming Liu ◽  
J. Cheng

Separating the workpiece velocity on the plane of grinding wheel, it is helpful to analyze Quick-point grinding mechanism. There are some relations among wheel’s deflective angle, workpiece feed velocity and tangential velocity. In this research, the resultant workpiece speed, grinding contact zone and material removal mode is analyzed. And a model is established which is helpful to analyze the tendency of component grinding forces and force ratio. It is found the grinding force is influenced by the factors such as cutting depth, wheel velocity, grinding angle as well as equivalent diameter, respectively. Finally, a theoretical basis for actual processing is provided.


2012 ◽  
Vol 591-593 ◽  
pp. 373-376
Author(s):  
Hong Xia Zhang ◽  
Wu Yi Chen ◽  
Xiu Zhuo Fu ◽  
Li Xia Huang

The present investigation was dedicated to elucidate grinding characteristics during surface grinding of titanium alloy(TC6) and high temperature alloy (GH2132) by using silicon carbide(SiC) and sol-gel (SG) wheel respectively. The grinding characteristic of SG wheel on aeronautical alloys was studied on the base of systematical measurement of the grinding force, grinding temperature, surface roughness and grinding ratio. The results indicated that the SG grinding wheel possesses excellent grinding properties and is more suitable for grinding these aeronautical alloys compared with conventional abrasive tools. Finally, the grinding mechanism of new-typed SG wheel was unveiled on the base of the microcrystalline structure analysis of SG grains.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2011 ◽  
Vol 189-193 ◽  
pp. 3191-3197
Author(s):  
Qiu Lian Dai ◽  
Can Bin Luo ◽  
Fang Yi You

In this paper, metal-bonded diamond wheels of different sized abrasive grain with different porosity were fabricated. Grinding experiments with these wheels on three kinds of materials were carried out under different grinding conditions. Experimental results revealed that wheel with high porosity (38%) had smaller grinding forces and specific energy than the one with a medium porosity (24%) on grinding G603. However, on grinding harder materials like Red granite or ceramics of Al2O3, the wheel with 38% porosity had bigger grinding forces and specific energy than the wheel with 24% porosity. Both wheels exhibited good self-sharpening capability during the grinding process of G603 and Red granite, but on grinding ceramics of Al2O3 the wheel with 38% porosity displayed in dull state during the grinding process . With the same porosity, the grinding forces of the wheel with a grain size of 230/270 US mesh were lower than the one with a grain size of W10 when grinding Red granite and ceramics of Al2O3. However revising results were obtained on grinding G603.


2006 ◽  
Vol 304-305 ◽  
pp. 232-235 ◽  
Author(s):  
Dao Hui Xiang ◽  
Y.P. Ma ◽  
Bo Zhao ◽  
Ming Chen

The crack extension course and ductile removal mechanism of nano ZrO2 ceramics were analyzed in this paper. On the basis of contrast tests with or without ultrasonic vibration, the influences of critical ductile grinding depth on grinding forces and surface quality were studied by dynamometer, SEM and AFM in different grinding condition. The reason for the increase of the critical grinding depth was discussed based on the analysis of grinding force and ultrasonic vibration course. At last, the formation mechanism of surface topography observed by AFM in ductile domain was analyzed. The research indicated that ultrasonic machining could obtain nano finished surface with high efficient.


Sign in / Sign up

Export Citation Format

Share Document