Grinding Characteristics and Mechanism of Ceramic Alumina Wheels on Aeronautical Alloys

2012 ◽  
Vol 591-593 ◽  
pp. 373-376
Author(s):  
Hong Xia Zhang ◽  
Wu Yi Chen ◽  
Xiu Zhuo Fu ◽  
Li Xia Huang

The present investigation was dedicated to elucidate grinding characteristics during surface grinding of titanium alloy(TC6) and high temperature alloy (GH2132) by using silicon carbide(SiC) and sol-gel (SG) wheel respectively. The grinding characteristic of SG wheel on aeronautical alloys was studied on the base of systematical measurement of the grinding force, grinding temperature, surface roughness and grinding ratio. The results indicated that the SG grinding wheel possesses excellent grinding properties and is more suitable for grinding these aeronautical alloys compared with conventional abrasive tools. Finally, the grinding mechanism of new-typed SG wheel was unveiled on the base of the microcrystalline structure analysis of SG grains.

2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 115 ◽  
Author(s):  
Wojciech Kapłonek ◽  
Krzysztof Nadolny ◽  
Krzysztof Rokosz ◽  
Jocelyne Marciano ◽  
Mozammel Mia ◽  
...  

The development of modern jet engines would not be possible without dynamically developed nickel–chromium-based superalloys, such as INCONEL® The effective abrasive machining of above materials brings with it many problems and challenges, such as intensive clogging of the grinding wheel active surface (GWAS). This extremely unfavorable effect causes a reduction in the cutting ability of the abrasive tool as well as increase to grinding forces and friction in the whole process. The authors of this work demonstrate that introduction of a synthetic organosilicon polymer-based impregnating substance to the GWAS can significantly improve the effects of carrying out the abrasive process of hard-to-cut materials. Experimental studies were carried out on a set of a silicon-treated small-sized sol–gel alumina 1-35×10×10-SG/F46G10VTO grinding wheels. The set contained abrasive tools after the internal cylindrical grinding process of INCONEL® alloy 600 rings and reference abrasive tools. The condition of the GWAS after the impregnation process was studied, including imaging and measurements of its microgeometry using confocal laser scanning microscopy (CLSM), microanalysis of its elemental distribution using energy dispersive X-ray fluorescence (EDXRF), and the influence of impregnation process on the grinding temperature using infrared thermography (IRT). The obtained results confirmed the correctness of introduction of the impregnating substance into the grinding wheel structure, and it was possible to obtain an abrasive tool with a recommended characteristic. The main favorable features of treated grinding wheel concerning the reduction of adhesion between the GWAS and grinding process products (limitation of the clogging phenomenon) as well as reduction of friction in the grinding process, which has a positive effect on the thermal conditions in the grinding zone.


2019 ◽  
Vol 26 (1) ◽  
pp. 550-562
Author(s):  
Jialiang Guan ◽  
Longyue Zhang ◽  
Shujun Liu ◽  
Yang Yang

AbstractAiming at the problem of poor processing performance and difficult processing in the process of aluminum-based diamond composites for electronic packaging, this paper uses electrolytic in-process dressing (ELID) grinding technology to grind the aluminum-based diamond composites. The quadratic orthogonal rotation combination method was used to investigate the influence law and degree of grinding depth, grinding wheel linear velocity, duty cycle and electrolysis current on surface roughness. The ELID grinding optimization process parameters of aluminum-based diamond composites obtained by LINGO software are: grinding depth 9.3μm, grinding wheel linear speed 36m/s, duty cycle 63.7%, electrolysis current 11.5A. The surface of the aluminum-based diamond composite with a surface roughness of 125 nm was machined by this optimized process parameter combination.


2013 ◽  
Vol 405-408 ◽  
pp. 3302-3306
Author(s):  
Ming Yi Tsai ◽  
Shi Xing Jian ◽  
J. H. Chiang

Grinding, a technique for removing abrasive materials, is a chip-removal process that uses an individual abrasive grain as the cutting tool. Abrasive material removal processes can be very challenging owing to the high power requirements and the resulting high temperatures, especially at the workpiece-wheel interface. This paper presents a novel system that uses graphite particles impregnated in an aluminum oxide matrix to form a grinding wheel. This study specifically investigated grinding wheels with a graphite content of 0.5 wt%. The new grinding wheel was compared with conventional grinding wheels by comparing the factors of grinding performance, such as surface roughness, morphology, wheel wear ratio, grinding temperature, and grinding forces, when the wheels were used under two different coolant strategiesdry and with minimum quantity lubrication (MQL) using pure water. This study found that there is a considerable improvement in the grinding performance using graphite-impregnated grinding wheels over the performance obtained using conventional grinding wheels. The use of 0.5 wt% graphite provided better surface roughness and topography, lower grinding temperature, and decreased force; in addition, wheel consumption was lower, resulting in extended wheel life.


Author(s):  
Wen-jian Wang ◽  
Kai-kai Gu ◽  
Kun Zhou ◽  
Zhen-bing Cai ◽  
Jun Guo ◽  
...  

The objective of this study is to explore the influence of grinding stone granularity on the grinding force and rail material removal behaviors using a rail grinding friction machine. The results indicate that with the increase in granularity, the grinding force, and friction coefficient in the grinding interface obviously increase, which brings about a rise in the hardness and grinding temperature-rise of rail specimens. The increase in the grinding stone granularity causes a fall in the grinding volume and surface roughness of rail materials and brings about stronger vibration in the grinding interface owing to different material removal mechanisms. In view of the experimental results, the optimization of grinding stone granularity is significant for improving the rail grinding efficiency and surface quality.


2011 ◽  
Vol 496 ◽  
pp. 1-6 ◽  
Author(s):  
Guang Qiu Hu ◽  
Jing Lu ◽  
Xi Peng Xu

In this paper, in order to avoid aggregate of nanodiamonds and reduce the damage problem caused by the hard abrasives during polishing, a kind of ultra-fine nanodiamond abrasive polishing pad was fabricated by means of sol-gel technology. The polishing pad was then used to polish silicon wafer on a nano-polishing machine. The surface morphologies and roughness were measured by both optical microscope and atomic force microscope (AFM). It is found that it was easy to machine the silicon wafer to mirror surface after polishing with the nanodiamond pad. And the surface roughness of the silicon wafer was reduced to 0.402 nm.


2013 ◽  
Vol 797 ◽  
pp. 234-239 ◽  
Author(s):  
Li Fei Liu ◽  
Fei Hu Zhang ◽  
Chun Hui Li ◽  
Jiang Chen ◽  
Min Hui Liu

In this paper, experiments are conducted to study the characters of Ultrasonic Assisted Grinding (UAG) and Conventional Grinding (CG), diamond grinding wheel is used in experiments, grinding forces and surface roughness are measured in both UAG and CG. The effects of different parameters on grinding force, surface roughness and force ratio are discussed. The results show that the grinding force and surface roughness in UAG is smaller than those in CG. The force ratio in UAG is lower than that in CG, which reveals that the grinding wheel has a good wear-resistant property in UAG process.


2009 ◽  
Vol 626-627 ◽  
pp. 165-170 ◽  
Author(s):  
J.F. Chen ◽  
J.H. Cui ◽  
F. Li

In this paper, the principle and impact factors for super-accurate grinding are analyzed and discussed. A comparative test is made to investigate the differences between advanced cubic boron nitride (CBN) slipstone and ordinary CBN abrasive corundum in performance such as grinding force, grinding temperature, metal surface metamorphic layer and so on. Based on these results, we design and manufacture a carding Laura slot super-accurate grinding machine. This new grinding machine is standard in system, compact in structure and perfect in appearance. Its fixture has a high positioning accuracy. The surface roughness of the Laura manufactured on the new grinding machine has reduced to Ra0.01μm. The productivity of the new machine increases by 25 times.


2012 ◽  
Vol 472-475 ◽  
pp. 2914-2917 ◽  
Author(s):  
Wei Li ◽  
Yang Hong ◽  
Liang Sheng Jin

BCB(Bamboo Charcoal Bonded) grinding wheel is a new kind of grinding wheel developed by bamboo charcoal-phenolic resin composite for ELID(Electrolysis In-process Dressing) grinding technique. To study the affection of the ground workpiece surface roughness and removal rate with this new kind of grinding technique, the stainless steel SUS304 was ground using BCB grinding wheel in different machining parameters with ELID grinding condition, and the machining characteristics of BCB grinding wheel has been researched. The experimental results indicated that the ground workpiece surface roughness can be reached to Ra 0.010μm, and the efficient and precision machining with BCB grinding wheel by ELID grinding technique has been achieved for hard-to-cut materials. Finally, by studying of the grinding wheel surface condition and wear, the BCB grinding wheel grinding mechanism has been preliminary discussed.


2012 ◽  
Vol 565 ◽  
pp. 46-51 ◽  
Author(s):  
Z.Z. Chen ◽  
Wen Feng Ding ◽  
Jiu Hua Xu ◽  
C.J. Song ◽  
Y.C. Fu ◽  
...  

Fabrication experiments of porous composite-bonded CBN wheels were conducted using alumina (Al2O3) bubbles, CBN grains, Cu-Sn-Ti alloy and graphite particles. Influence of sintering parameters and porosity on the bending strength of the CBN composite blocks was measured and analyzed. Dressing and grinding practice was carried out. The results show that the optimal sintering temperature of the CBN composite blocks is 880°C. When the porosity of composite blocks is 8-45 %, the strength reaches 51-103 MPa. Regular shape of the pores is obtained after dressing. Both the grinding force and grinding temperature of the composite-bonded CBN wheel are lower than that of the vitrified one under the same grinding condition, which indicates the better grinding performance of the new-type porous composite-bonded CBN wheel.


Sign in / Sign up

Export Citation Format

Share Document