Fabrication and Characterization of Electro-Active Polymer for Flexible Tactile Sensing Array

2008 ◽  
Vol 381-382 ◽  
pp. 391-394 ◽  
Author(s):  
L.C. Tsao ◽  
D.R. Chang ◽  
Wen Ping Shih ◽  
Kuang Chao Fan

This paper presents fabrication and characterization of a pressure-sensitive polymeric composite on a flexible readout circuit as an artificial skin. Porous nylon was used as the matrix, which provided skin-like mechanical properties. Inside the matrix, polypyrrole was electrochemically deposited and acted as conductive dopant. The fabrication was detailed. The conductivity of the fabricated composite increased when a compressive load was applied. The electro-mechanical characteristics of the composite were measured.

2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


Vacuum ◽  
2016 ◽  
Vol 128 ◽  
pp. 230-233 ◽  
Author(s):  
Wei Li ◽  
Jia Meng ◽  
Ping Liu ◽  
Haoming Du ◽  
Ke Zhang ◽  
...  

Author(s):  
Ênio Henrique Pires da Silva ◽  
Emiliano Barretto Almendro ◽  
Amanda Albertin Xavier da Silva ◽  
Guilherme Waldow ◽  
Flaminio CP Sales ◽  
...  

Composites using natural fibers as reinforcement and biodegradable polymers as matrix are considered environmentally friendly materials. This paper seeks the mechanical and morphological characterization of a biocomposite of polyurethane (PU) derived from a blend of vegetable oils doped with aluminatrihydrate (ATH) and reinforced with hydrated cotton fiber fabric (HCF). The comparison and study were performed based on the properties of the: (i) pure PU; (ii) PU doped with ATH containing 30% of the final mass (PU+30%ATH); (iii) composite of PU reinforced with 7 layers of cotton fiber fabric (PU+7CF); (iv) composite of PU+30%ATH reinforced with 7 layers of CF (PU+30%ATH+7CF); (v) composite of PU+30%ATH reinforced with 7 layers of hydrated cotton fiber fabric (PU+30%ATH+7HCF). The mechanical properties obtained according to the tensile test for the composite PU+30%ATH+CF with fibers oriented at 0° showed a significant increment in tensile strength (60 MPa) and the modulus of elasticity (4.7 GPa) when compared to pure PU (40 MPa) and (1.7 GPa) respectively. PU+30%ATH also presented a rising tensile strength (31 MPa) and Young modulus (2.6 GPa). For the composite with addition of water, results presented a significant decrease in strength (31.3 MPa) and stiffness (0.9 GPa) than the composite with no water. Electron microscopy (SEM) analyses exhibited that the samples with addition of water showed the presence of large amounts of pores and the lower interaction between matrix and fiber. These results may explain the lower mechanical properties of this material. DOI: http://dx.doi.org/10.30609/JETI.2019-7576


Author(s):  
M.O. Kaptakov

In this work, the mechanical properties of composite samples prepared using a conventional and nanomodified matrix were studied. The thickness of the monolayers in the samples was 0,2 μm. It was found in experiments, that the addition of fullerene soot as a nanomodifierled to an increase in the mechanical properties of the samples along the direction of reinforcement. At the same time, an improvement in the quality of the contact of the matrix with the fibers in the samples with the nanomodifier was observed: on the fracture surface, the nanomodified matrix envelops the fibers, while the usual matrix completely exfoliates. The obtained effects of changing the strength of composites can be associated, among other things, with a change in the level of residual stresses arising in composites during nanomodification. Analytical and numerical modeling methods are used to explain these effects.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1549
Author(s):  
Qian Yang ◽  
Xi Wang ◽  
Xin Ding ◽  
Qiao Li

Textile temperature sensors are highly in demanded keep a real-time and accurate track of human body temperature for identification of healthy conditions or clinical diagnosis. Among various materials for textile temperature sensors, temperature-sensitive metal fibers have highest precision. However, those metal fibers are mechanically too weak, and break constantly during the weaving process. To enhance the mechanical strength of the metal fibers, this paper proposes to make wrapped metal fibers using wrapping technology, and characterize the effect of wrapped metal yarns on both mechanical properties and sensing behaviors. The wrapped yarns were woven into fabrics, forming the fabric temperature sensors. Results show that strength and maximum strain of the wrapped yarns are 2.69 and 1.82 times of pure Pt fibers. The response time of fabric temperature sensors using wrapped yarns was observed as 0.78 s and 1.1 s longer compared to that using Pt fibers when front and back sides contacted heat source, respectively. It is recommended that the wrapping method should be implemented for the protection of Pt fibers in fabric temperature sensors.


2015 ◽  
Vol 1088 ◽  
pp. 656-659
Author(s):  
Ivaldo D. Valarelli ◽  
Rosane A.G. Battistelle ◽  
Barbara Stolte Bezerra ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
...  

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.


2020 ◽  
Author(s):  
Susilawati ◽  
Jantiber Siburian ◽  
Yuan Alfinsyah Sihombing ◽  
Bonar Ferdiansyah ◽  
Sri Ningsih Y. Pakpahan

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3944 ◽  
Author(s):  
Zhen Gu ◽  
Zili Gao ◽  
Wenli Liu ◽  
Yongqiang Wen ◽  
Qi Gu

Natural tissues and organs have different requirements regarding the mechanical characteristics of response. It is still a challenge to achieve biomaterials with anisotropic mechanical properties using an extracellular matrix with biological activity. We have improved the ductility and modulus of the gelatin matrix using 3D printed gelatin microfibers with different concentrations and topologies and, at the same, time achieved anisotropic mechanical properties. We successfully printed flat microfibers using partially cross-linked gelatin. We modified the 10% (w/v) gelatin matrix with microfibers consisting of a gelatin concentration of 14% (w/v), increasing the modulus to about three times and the elongation at break by 39% in parallel with the fiber direction. At the same time, it is found that the microfiber topology can effectively change the matrix ductility, and changing the modulus of the gelatin used in the microfiber can effectively change the matrix modulus. These findings provide a simple method for obtaining active biological materials that are closer to a physiological environment.


Sign in / Sign up

Export Citation Format

Share Document