Effect of the Annealing Temperature on Dielectric Properties of Bi1.5Zn1.0Nb1.5O7 Films Prepared by MOCVD

2008 ◽  
Vol 388 ◽  
pp. 175-178
Author(s):  
Hiroshi Funakubo ◽  
Shingo Okaura ◽  
Muneyasu Suzuki ◽  
Hiroshi Uchida ◽  
Seiichiro Koda

Effect of annealing temperature on the dielectric properties of Bi1.5Zn1.0Nb1.5O7 films prepared on (111)Pt//(001)Al2O3 and (111)Pt/fused silica substrates by MOCVD was investigated. The tunability and the inverse of the dielectric loss [1/ (tan )] increased with increasing annealing temperature. Relative dielectric constant and temperature coefficient of the capacitance (TCC) increased with the crystallinity of the films. On the other hand, (1/tan ) was independent of the crystallinity of the films, but was dramatically increased by the annealing.

2008 ◽  
Vol 368-372 ◽  
pp. 170-172 ◽  
Author(s):  
Dong Guo ◽  
Zhi Yuan Ling ◽  
Xing Hu

A middle permittivity dielectrics with the tunable temperature coefficient of dielectric constant (τε) in the BaO-TiO2-Nb2O5 system, Ba3Ti5Nb6O28, has been synthesized and characterized. The dielectric properties of Ba3Ti5Nb6O28 measured at 1MHz are as follows: dielectric constant (εr) ~38, dielectric loss (tanδ)<0.0002, temperature coefficient of dielectric constant (τε)~-22ppm/°C. The Ba3Ti5Nb6O28 phase satisfies the requirements of NP0 (MLCC) dielectrics, but the sintering temperature of the Ba3Ti5Nb6O28 phase (1250~1300°C) is too high to be co-fired with Ag or Cu electrodes. To lower the sintering temperature, an appropriate amount of ZnO-B2O3 frit (5~7wt.%) was added to the Ba3Ti5Nb6O28 phase and dense ceramics were obtained at the sintering temperature lower than 1000°C. Furthermore, the CaNb2O6 phase with the positive τε of 65ppm/°C was incorporated into the Ba3Ti5Nb6O28 phase to adjust the temperature coefficient of dielectric constant from negative to positive(-22~30ppm/°C). Near zero τε ceramics with high εr (38) and low tanδ (0.0002) were obtained at the composition of Ba3Ti5Nb6O28/ CaNb2O6/ ZB frit=76:17:7 wt.%.


2014 ◽  
Vol 38 (1) ◽  
pp. 39-47
Author(s):  
Meherun Nessa

The morphology and dielectric properties of carbon micro-coils (CMC) composite sheet wereexamined. Frequency dependence of dielectric parameters; dielectric loss angle (?), dielectric losstangent (tan?) and relative dielectric constant ( ?r) were measured on single and double-helixcomposite sheet. It was found that these parameters of CMC/polysilicone composites extensivelychanged with the additional amount of CMC with polysilicone resine. It was also observed that thehigher additional amount (wt%) of CMC is appropriate for high response. DOI: http://dx.doi.org/10.3329/jbas.v38i1.20210 Journal of Bangladesh Academy of Sciences, Vol. 38, No. 1, 39-47, 2014


2002 ◽  
Vol 17 (6) ◽  
pp. 1550-1552 ◽  
Author(s):  
Wu Shunhua ◽  
Wang Guoqing ◽  
Zhao Yushuang

Sn-doped BaO–TiO2–ZnO (BTZ) microwave ceramic materials were investigated as a function of SnO2 content. Addition of a small amount of SnO2 (0.01–0.06 wt%) lowered the sintering temperature of the system to 1160 °C and also greatly reduced the dielectric loss (tan δ), which is closely related to the insulation resistivity. The Sn-doped BTZ materials were found to have excellent dielectric properties at 1 GHz with dielectric constant Ε ≈tangent tan δ ≤ 1 × 10−4, temperature coefficient of dielectric constant, αΕ = 0 ± 30 ppm/°C, and volume resistivity ρv ≥ 1013 ω cm.


2015 ◽  
Vol 804 ◽  
pp. 16-20 ◽  
Author(s):  
Panakamon Deeyai ◽  
Thanapong Sareein ◽  
Bundit Putasaeng ◽  
Naphat Chathirat

Dielectric properties of hydrothermally decomposed Y2NiMnO6 ceramics prepared under several sintering conditions were investigated at room temperature. As the results, dielectric constants at 200 Hz were found about 928 and 23x103 for samples sintered at 1000 and 1400 oC, respectively. The dielectric permittivity for samples sintered at 1400 oC for different sintering times from 6 to 24 hours have yielded the best dielectric permittivity value of 104. On the other hand, low sintering temperature had resulted in smaller dielectric loss in comparison to larger dielectric loss generally found in the ceramics with high sintering temperature.


2008 ◽  
Vol 368-372 ◽  
pp. 940-942
Author(s):  
Hai Yang Zhao ◽  
Wei Min Wang

A series of samples of hexagonal boron nitride-aluminum nitride (10-90, 15-85, 20-80, 25-75, 30-70wt.%) ceramic composites were prepared by spark plasma sintering in a nitrogen atmosphere at 1650 °C-1800 °C for 5min. Different amounts of CaF2 were added as sintering aids. The effects of CaF2 and sintering temperature on densification and dielectric properties were discussed. The addition of CaF2 enhances relative dielectric constant and loss tangent of the samples. The increase in sintering temperature promotes the densification and decreases the dielectric loss tangent. When being sintered at 1700 °C, the relative density, dielectric constant and dielectric loss tangent of the sample with 15wt.%BN are 98.04%, 7.15 and 6.31×10-4 respectively.


2011 ◽  
Vol 326 ◽  
pp. 127-130
Author(s):  
Xian Li Huang ◽  
Fu Ping Wang ◽  
Ying Song

In the present work, the microstructure and microwave dielectric properties of BaTi4O9 ceramics derived from a sol-gel precursor were presented. Density measuring results demonstrated that the largest densities of ceramic sample about 96.7% could be reached by virtue of a cool iso-static press and a sintering process at at 1300 °C for 6 hours. The dielectric constant (εr), quality factor (Q×f) and the temperature coefficients (τf) of the BaTi4O9 ceramic samples were 36.65, 28000 GHz, +20.2 ppm/°C, respectively. XRD, SEM and XPS were used to characterize the microstructure of the ceramics samples. Substantial Ti3+ was proposed to be the cause of dielectric loss.


2010 ◽  
Vol 105-106 ◽  
pp. 355-358 ◽  
Author(s):  
Z.L. Zhu ◽  
Dong Yan Tang ◽  
X.H. Zhang ◽  
Y.J. Qiao

To prevent the potential cracking of gel fibers, La modified lead zirconate titanate (PLZT) ceramic fibers with diameter within 50µm were achieved by embedding into PLZT powders during the heat treatment. Then the 1-3 PLZT fiber/interpenetrating polymer network (IPN) piezoelectric composites were prepared by casting the IPN precursors onto the well aligned ceramic fibers. The influences of the heating temperatures and La amounts on the dielectric constant, dielectric loss with frequencies and piezoelectric constant of PLZT were investigated in detail. The morphologies of fibers and composites were observed by biological microscope. And also, the dielectric constant of PLZT fibers and PLZT fiber/IPN piezoelectric composites were detected.


2014 ◽  
Vol 1035 ◽  
pp. 422-425
Author(s):  
Jian Yong Guo ◽  
Tao Sheng Zhou ◽  
Ji Hong Liao

The Bi0.5(Na1-xKx)0.5-yBaTiO3(BNK-BT) lead-free ceramics have been prepared by the solild reactive sintering method. XRD patterns show the BNK-BT ceramics had a perovskite structure. Piezoelectric and dielectric properties of the ceramics also have been studied. The results show that the samples had the best piezoelectric and dielectric properties when x=0.20, y=0.10. And the maximum of d33is 149 pC/N, while the relative dielectric constant is 1087.


2021 ◽  
Vol 64 (4) ◽  
pp. 1373-1379
Author(s):  
Samir Trabelsi

HighlightsMoisture and water activity were determined nondestructively and in real time from measurement of dielectric properties.Moisture and water activity calibration equations were established in terms of the dielectric properties.Situations in which bulk density was known or unknown were considered.SEC ranged from 0.41% to 0.68% for moisture and from 0.02 to 0.04 for water activity.Abstract. A method for rapid and nondestructive determination of moisture content and water activity of granular and particulate materials was developed. The method relies on measurement of the dielectric constant and dielectric loss factor at a single microwave frequency. For the purpose of illustration, the method was applied to predicting the moisture content and water activity of almond kernels. A free-space transmission technique was used for accurate measurement of the dielectric properties. Samples of Bute Padre almond kernels with moisture content ranging from 4.8% to 16.5%, wet basis (w.b.), and water activity ranging from 0.50 to 0.93 were loaded into a Styrofoam sample holder and placed between two horn-lens antennas connected to a vector network analyzer. The dielectric properties were calculated from measurement of the attenuation and phase shift at 8 GHz and 25°C. The dielectric properties increased linearly with moisture content, while they showed an exponential increase with water activity. Situations in which the bulk density was known and unknown were considered. Linear and exponential growth regressions provided equations correlating the dielectric properties with moisture content and water activity with coefficients of determination (r2) higher than 0.96. Analytical expressions of moisture content and water activity in terms of the dielectric properties measured at 8 GHz and 25°C are provided. The standard error of calibration (SEC) was calculated for each calibration equation. Results show that moisture content can be predicted with SECs ranging from 0.41% to 0.68% (w.b.) and water activity with SECs ranging from 0.02 to 0.04 for almond kernel samples with water activity ranging from 0.5 to 0.9 and moisture contents ranging from 4.8% to 16.5% (w.b.). Keywords: Bulk density, Dielectric constant, Dielectric loss factor, Free-space measurements, Loss tangent, Microwave frequencies, Moisture content, Water activity.


2007 ◽  
Vol 124-126 ◽  
pp. 177-180
Author(s):  
Jang Sik Lee ◽  
Q.X. Jia

To investigate the anisotropic dielectric properties of layer-structured bismuth-based ferroelectrics along different crystal directions, we fabricate devices along different crystal orientations using highly c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films on (001) LaAlO3 (LAO) substrates. Experimental results have shown that the dielectric properties of the BLT films are highly anisotropic along different crystal directions. The dielectric constants (1MHz at 300 K) are 358 and 160 along [100] and [110], respectively. Dielectric nonlinearity is also detected along these crystal directions. On the other hand, a much smaller dielectric constant and no detectable dielectric nonlinearity in a field range of 0-200 kV/cm are observed for films along [001] when c-axis oriented SRO is used as the bottom electrode.


Sign in / Sign up

Export Citation Format

Share Document