Dynamic Characteristic and Aseismatic Analysis of Tall Structures with Outriggers

2008 ◽  
Vol 400-402 ◽  
pp. 607-612
Author(s):  
Yu Chen ◽  
Pu Sheng Shen

Based on the finite element software ETABS, the effect of outriggers on the seismic response of a 50-story steel frame-reinforced concrete core tube structure was analyzed in this paper. Periods of free-vibrations were obtained from mode analysis. Response spectrum on the seismic properties was discussed. Elastic time history method was used to get complete analysis of the structure adopting four seismic waves. Structural horizontal displacement, drift angle, internal force of components and the distribution of internal forces between inner tube and outer frame under earthquake were studied. The rational quantity and locations of outriggers were considered. Further research in elastic time history was presented considering the influence of quantity of outriggers when outriggers were all set in “reasonable locations”. Some suggestions about steel frame-reinforced concrete core tube structures with outriggers in earthquake areas were given.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Zeng ◽  
Yunfeng Xiao ◽  
Juan Chen ◽  
Yiguang Chen

This paper experimentally investigated the seismic behavior of a 1:5 reduced-scale model of concrete-encased steel frame-reinforced concrete core tube building. The quasi-static testing with multipoint loading was carried out, and mode-superposition response spectrum method was adopted to control the amplitude of displacement. The damage process, crack pattern, and failure mode were observed. Various parameters were obtained, including lateral deformation, hysteretic characteristics, strain distribution, ductility, and energy dissipation capacity. The test revealed the distributions of base shear between the core tube and frame. The result indicated that the core tube bears major loading and exhibited overturning failure, afterwards frame carry the surplus load and exhibited column tensile failure and joint panel shear failure. The characteristic of two seismic resistant systems are reflected by the excellent cooperation of core tube and frame.


2017 ◽  
Vol 7 (4) ◽  
pp. 314 ◽  
Author(s):  
Lei Zeng ◽  
Yunfeng Xiao ◽  
Yiguang Chen ◽  
Siqian Jin ◽  
Wei Xie ◽  
...  

2013 ◽  
Vol 788 ◽  
pp. 558-561
Author(s):  
Jian Qiang Wang ◽  
Wen Tao Ma ◽  
Min Jing Ma

Steel reinforced concrete composite structure which apply in the high-rise buildings, not only save steel, but also have excellent properties in fire prevention, anti-corrosion, and seismic performance, and improve the speed of construction, economic efficiency.This thesis based on the analyse of a steel reinforced concrete composite structure tower and the domestic and foreign experts study use Finite Element Analysis software SAP2000 analyze the dynamic Performance of the structure to draw the inherent vibration period and frequency of the structure. The structure is analyzed to obtain its deformation with different height of the structural elements under a small earthquake. Structure and component in elastic stage when suffur a small earthquake. Using the mode decomposition response spectrum method and method of linear time history analysis, the maximum horizontal displacements of the structural layer, the maximum inter-story displacement and the maximum inter-story displacement angle is obtained to see if the results within a predetermined range.


2012 ◽  
Vol 166-169 ◽  
pp. 2164-2170
Author(s):  
Xu Jie Sun ◽  
Hou Zhang ◽  
Da Gang Lu ◽  
Feng Lai Wang

The design process of the 100 m high reinforced concrete masonry building in China was firstly presented, deformation check calculation under earthquake action by mode-superposition response spectrum method and time-history analysis method were detailed and deformation under wind load was also checked. Then elastic-plastic deformation under earthquake action was checked by time-history analysis method and pushover analysis method with both under uniform load and reverse triangle load. The conclusion is construct 100 m high office building built in Fortification intensity 6 by reinforced concrete masonry is feasible. Then the building was redesigned as built in fortification 7, the same check was performed as that have been done in fortification 6, it is feasible too.


2001 ◽  
Vol 3 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Bahram M Shahrooz ◽  
Bingnian Gong ◽  
Gokhan Tunc ◽  
Jeremy T Deason

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Deyuan Zhou ◽  
Changtuan Guo ◽  
Xiaohan Wu ◽  
Bo Zhang

Shanghai International Design Center (SHIDC) is a hybrid structure of steel frame and reinforced concrete core tube (SF-RCC). It is a building of unequal height two-tower system and the story lateral stiffness of two towers is different, which may result in the torsion effect. To fully evaluate structural behaviors of SHIDC under earthquakes, NosaCAD, ABAQUS, and Perform-3D, which are widely applied for nonlinear structure analysis, were used to perform elastoplastic time history analyses. Numerical results were compared with those of shake table testing. NosaCAD has function modules for transforming the nonlinear analysis model to Perform-3D and ABAQUS. These models were used in ABAQUS or Perform-3D directly. With the model transformation, seismic performances of SHIDC were fully investigated. Analyses have shown that the maximum interstory drift can satisfy the limits specified in Chinese code and the failure sequence of structural members was reasonable. It meant that the earthquake input energy can be well dissipated. The structure keeps in an undamaged state under frequent earthquakes and it does not collapse under rare earthquakes; therefore, the seismic design target is satisfied. The integrated use of multisoftware with the validation of shake table testing provides confidence for a safe design of such a complex structure.


2010 ◽  
Vol 163-167 ◽  
pp. 1100-1106
Author(s):  
Jun Teng ◽  
Wei Liang Guo ◽  
Bai Sheng Rong ◽  
Zuo Hua Li ◽  
Zhi Jun Dong

Diagrid tube structures have advantages on constructing high-rise buildings for its great lateral stiffness, but its seismic design methodology researches are limited. The two-stage design method in Chinese code is not specific enough for the seismic fortification objectives of this kind of structures. It is necessary to propose some specific seismic performance objectives for the key components. Typical CFST diagrid tube-concrete core tube structures are studied by dynamic elastic-plastic time-history analysis using Perform-3D program. The structure plasticity developing process is summarized and the distribution characteristics of seismic fortification lines between tubes are discussed. The influences of main structure lateral stiffness related factors on the plasticity developing process are researched. The key components of structure lateral stiffness and plastic energy dissipation are studied. The seismic performance objectives of the key components are proposed for the three-level seismic fortification objectives.


2011 ◽  
Vol 243-249 ◽  
pp. 740-745 ◽  
Author(s):  
Qing Ning Li ◽  
Qing Mei Liu ◽  
Lin Zhao

A steel reinforced concrete frame-concrete core wall structure is taken as the research object in this paper. The whole space finite element models are established by software ETABS, modal analysis, response spectrum method and elastic time-history analysis are conducted. And static elastio-plastic time history analysis of the high-rise structure is conducted by software MIDAS/GEN. Seismic response of the high-rise structure is analyzed under medium earthquake and rare earthquake , elastic deformation is calculated under conventional earthquake and elastic-plastic deformation is calculated under rare earthquake. The results show that the structure can meet the requirements of no-damage under light earthquake, repairable under medium earthquake and no-collapse under strong earthquake.


2011 ◽  
Vol 368-373 ◽  
pp. 285-288
Author(s):  
Shu Yun Zhang ◽  
Guo Liang Bai ◽  
Zhi Gang Gao

For seismic design of composite frame and reinforced concrete core hybrid structures in high-rise buildings, the response spectrum method is influenced to a large extent by mode combination rules and number of combined modes. The dynamic characteristics of composite frame and concrete core hybrid structures were studied through modal analysis, natural vibration periods and mode shape of hybrid structures had calculated and analyzed, the results show that the natural vibration frequencies are near, the complete quadratic combination of mode combination rule was recommended for avoiding higher order mode shape lose in the response spectrum method. The reasonable number of combined modes for response spectrum method were studied by truncation error analysis, it is proposed that more than 20 modes are combined. The results of the time history analysis und The three dimensional finite element er three earthquake waves were compared with results of response spectrum, indicating that the maximum response of hybrid structures can be obtained under reasonable mode number.


2018 ◽  
Vol 195 ◽  
pp. 03021
Author(s):  
Omer Mughieda ◽  
Kenan Hazirbaba ◽  
Khaldoon Bani-Hani ◽  
Wassim Daoud

Stability and stress analyses are the most important elements that require rigorous consideration in design of a dam structure. In the current research, dynamic structural stability of a roller-compacted-concrete (RCC) dam was performed. The RCC dam was modeled using the finite element method to investigate the stability against sliding and the structural stability of the body of the dam. The commercially available finite element software (SAP 2000) was used to analyze stresses in the body of the dam and foundation. A linear finite element dynamic analysis was performed. Response spectrum and time history methods were used with different earthquake loads. The response spectrum of the 1995 Aqaba earthquake and a representative elastic-spectrum with smooth plateau for both Operating Basis Earthquake (OBE) and Maximum Credible Earthquake (MCE) were used in this study. The analysis was carried out assuming that no slip will occur at the interface between the dam and the foundation. The greatest tension was found to develop in the rock adjacent to the toe of the upstream slope. The factor of safety against sliding along the entire base of the dam was found to be greater than 1 (FS>1), for both loading conditions.


Sign in / Sign up

Export Citation Format

Share Document