Influence of Temperature on the Cracking of Reinforced Concrete Frame

2008 ◽  
Vol 400-402 ◽  
pp. 963-968
Author(s):  
Jin Song Lei ◽  
Dong Sheng Yang ◽  
Shan Chuan Ying ◽  
Yin Sheng Zou

In this paper, the influence of temperature on the cracking of reinforced concrete frame is studied. Finite element analysis software is used to simulate the concrete cracking. In the modeling process, separate model element of SOLID65+LINK8 is used. Also, the Hongestad model is applied to the stress-strain relation of concrete and the rule of BISO is applied to the stress-strain relation of steel. By comparing the stress and strain of three different structure frames before and after temperature increasing, the extending rules of concrete cracking and the stress character of beam and column are analyzed. It is found that the maximum stress of beam is located in the end of the beam-column joints and the middle of beam under the temperature action. It is suggested that they are caused by moment and axis-force respectively. However, the greatest stress of column is situated at the end of beam-column joints. The reason is that the end of beam-column joints should deform to coordinate the influence of temperature. Thus, greater peak stress is caused. So, the concrete cracking is always distributed in the middle of beam span or beam-column joints, where the position of stress concentrates. In addition, the stress of steel in beams increases greatly under the temperature load, suggesting that the temperature leads to the internal force redistribution in the concrete component and the cracking of component.

2014 ◽  
Vol 1065-1069 ◽  
pp. 1226-1229
Author(s):  
Yong Sheng Zhang ◽  
Yan Ying Li

Basing on the finite element analysis software, the emergence of crack under the effect of gradual changed temperature load and the change of stress which are in the condition of super reinforced concrete frame structure are analyzed from the linear and nonlinear numeral simulation. The simulation shows that the structure component under the normal condition is cracked and turn into the nonlinear condition and the steel bars still works under the elastic stage. Meanwhile the actual stage which is reflected by the elastic-plastic analysis of the internal force and deformation is compared by the results which are obtained by the actual project observed results and the calculation of the simplified model. So the distribution of the stress which is caused by the structure temperature reduction is greatly evaluated by the usage of the cracking model which is nonlinear finite element and also plays an important role in the engineering project and practice.


2016 ◽  
Vol 08 (06) ◽  
pp. 1650082 ◽  
Author(s):  
Liang Zhang ◽  
Huiting Zhang ◽  
Jian Wu ◽  
Bo Yan ◽  
Mengkai Lu

Bi-modulus materials have different moduli in tension and compression and the stress–strain relation depends on principal stress that is unknown before displacement is determined. Establishment of variational principle is important for mechanical analysis of materials. First, parametric variational principle (PVP) is proposed for static analysis of bi-modulus materials and structures. A parametric variable indicating state of principal stress is included in the potential energy formulation and the nonlinear stress–strain relation is evolved into a linear complementarity constraint. Convergence of finite element analysis is thus improved. Then the proposed variational principle is extended to a dynamic problem and the dynamic equation can be derived based on Hamilton’s principle. Finite element analysis of nacreous bio-composites is performed, in which a unilateral contact behavior between two hard mineral bricks is modeled using the bi-modulus stress–strain relation. Effective modulus of composites can be determined numerically and stress mechanism of “tension–shear chain” in nacre is revealed. A delayed effect on stress propagation is found around the “gaps” between mineral bricks, when a tension force is loaded to nacreous bio-composites dynamically.


2011 ◽  
Vol 50-51 ◽  
pp. 1003-1007 ◽  
Author(s):  
Jian Qiang Han ◽  
Zhen Bao Li ◽  
Xiao Sheng Song

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of this new prestressed precast reinforced concrete intelligent structure, by analyzing one prestressed precast reinforced concrete frame under low reversed cyclic load test. Prestressed precast reinforced concrete frame is a new assembly architecture intelligent structure. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. Experimental studies indicate that this new prestressed precast reinforced concrete intelligent structure has a good seismic performance. This prestressed precast reinforced concrete frame is a new kind of structural system complying with the development of architectural industrialization, which is worthy of popularization and application in the earthquake area.


1994 ◽  
Vol 21 (2) ◽  
pp. 307-328 ◽  
Author(s):  
S. J. Pantazopoulou ◽  
J. F. Bonacci

The behavior of earthquake-resistant reinforced concrete frame connections has been researched extensively over the past 30 years, but conflicting interpretations of the underlying physical problem and differences of opinion in defining acceptable performance criteria still pervade almost every aspect of connection behavior and design. This study explores the mechanics of reinforced concrete beam-column joints under lateral loads, with the aim to assess the parametric dependence of the behavior of these elements for the benefit of design. In the course of the study, published experimental information from around the world and results from a number of novel analytical studies are considered collectively in an attempt to broaden the scope and depth of the parametric description of joint mechanics. Apart from improved understanding of the physical problem, the most important outcome of this research is to formulate simple tools for design of earthquake-resisting beam-column connections using a consistent mechanics approach. Key words: beam-column connection, database, earthquake-resistant design, finite element analysis, reinforced concrete, shear strength, stirrups.


2012 ◽  
Vol 446-449 ◽  
pp. 695-698
Author(s):  
Jian Qiang Han ◽  
Xiu Yan Fu ◽  
Jiang Ming Tang

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of unbonded precast reinforced concrete frame, by analyzing one unbonded precast reinforced concrete frame under low reversed cyclic load test. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. So we build finite element analysis models with different design parameters to analysis the impaction for seismic performance. Numerical analysis results can provide a scientific reference for the unbonded precast frame structure design.


2012 ◽  
Vol 166-169 ◽  
pp. 172-175
Author(s):  
Chun Ming Wei ◽  
De Long Shao ◽  
Hui Su ◽  
Qiang Zhao

To investigate the effect of the horizontal construction joint on seismic behavior of the exterior joint of the reinforced concrete frame structure, the numerical simulation of the exterior joint with the construction joint under the low cyclic loading was done. The experimental results and the numerical simulation values were compared. Seen from the ultimate load, the experiment value is 158.7kN, the simulation value is 170kN, the relative error is about 11%.Further analysis of the exterior joint of reinforced concrete frame skeleton properties, the feasibility of applying unit construction joints is verified.


2012 ◽  
Vol 256-259 ◽  
pp. 689-692
Author(s):  
Hui Na Jia ◽  
Gao Wei Yue

In this paper the theoretical model of reinforced concrete frame structure is established to numerically simulate and analyze its overall morphology with the finite element analysis method. The calculation results shows that at the bottom of the structure the stress and deformation is much larger than other parts with the action of constant load, live load and wind load. And with modal analysis and buckling analysis natural frequency and vibration mode are obtained to avoid resonance and predict the buckling load.


Sign in / Sign up

Export Citation Format

Share Document