On earthquake-resistant reinforced concrete frame connections

1994 ◽  
Vol 21 (2) ◽  
pp. 307-328 ◽  
Author(s):  
S. J. Pantazopoulou ◽  
J. F. Bonacci

The behavior of earthquake-resistant reinforced concrete frame connections has been researched extensively over the past 30 years, but conflicting interpretations of the underlying physical problem and differences of opinion in defining acceptable performance criteria still pervade almost every aspect of connection behavior and design. This study explores the mechanics of reinforced concrete beam-column joints under lateral loads, with the aim to assess the parametric dependence of the behavior of these elements for the benefit of design. In the course of the study, published experimental information from around the world and results from a number of novel analytical studies are considered collectively in an attempt to broaden the scope and depth of the parametric description of joint mechanics. Apart from improved understanding of the physical problem, the most important outcome of this research is to formulate simple tools for design of earthquake-resisting beam-column connections using a consistent mechanics approach. Key words: beam-column connection, database, earthquake-resistant design, finite element analysis, reinforced concrete, shear strength, stirrups.

2014 ◽  
Vol 1008-1009 ◽  
pp. 1326-1329
Author(s):  
Shu Dian Yao ◽  
Fu Ma

The finite element analysis software-ANYSIS is used to calculate and analyze the deformation and mechanical performance of the abnormal joints core zone of variable beam shaped (reinforced concrete beam) under the positive and negative symmetric loads (simulate earthquake loads) . With the method of control variables, multiple finite element analysis models are set up and the focus is to explore the crack development, stress distribution and failure pattern in different stages. The compared conclusion shows that the shear failure of small joint core is the key to the whole joints core area for variable beam shaped.


2003 ◽  
Vol 6 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sayed A. Attaalla ◽  
Mehran Agbabian

The characteristics of the shear deformation inside the beam-column joint core of reinforced concrete frame structures subjected to seismic loading are discussed in this paper. The paper presents the formulation of an analytical model based on experimental observations. The model is intended to predict the expansions of beam-column joint core in the horizontal and vertical directions. The model describes the strain compatibility inside the joint in an average sense. Its predictions are verified utilizing experimental measurements obtained from tests conducted on beam-column connections. The model is found to adequately predict the components of shear deformation in the joint core and satisfactorily estimates the average strains in the joint hoops up to bond failure. The model may be considered as a simple, yet, important step towards analytical understanding of the sophisticated shear mechanism inside the joint and may be implemented in a controlled-deformation design technique of the joint.


1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


2013 ◽  
Vol 351-352 ◽  
pp. 342-346
Author(s):  
Tai Hua Yang ◽  
Xiao Yu ◽  
Jian Wu Gong ◽  
Bin Tang ◽  
Yang Zhi Zhong ◽  
...  

According to the domestic and foreign various building codes and a kind of limit fitting formula, to calculate and analyze the compressive bearing capacity of sandwich reinforced concrete beam-column nodes in a high-rising frame structure engineering, and to compare with the results calculated by Midas. They shown those are the facts that cant be neglected, the compressive bearing capacity of the sandwich node core area concrete in beam and plates constraint would improve and the amplitude of improving would be great. But current Chinese building codes haven't included them in the formal design provisions, these ways have to be perfected. In the same time, beam and plate constraint would also have a certain effect to the shear bearing capacity. By contrast, the shear bearing capacity in considering beam and plate constraint would increase 12% to 24%, it would get to 91% of the limit fitting formula calculation value when the short side was sheared, and it is 92% when the long side was sheared. That shown it is quite perfect in considering the effect of the orthogonal beam-plate constraints in domestic seismic code.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1226-1229
Author(s):  
Yong Sheng Zhang ◽  
Yan Ying Li

Basing on the finite element analysis software, the emergence of crack under the effect of gradual changed temperature load and the change of stress which are in the condition of super reinforced concrete frame structure are analyzed from the linear and nonlinear numeral simulation. The simulation shows that the structure component under the normal condition is cracked and turn into the nonlinear condition and the steel bars still works under the elastic stage. Meanwhile the actual stage which is reflected by the elastic-plastic analysis of the internal force and deformation is compared by the results which are obtained by the actual project observed results and the calculation of the simplified model. So the distribution of the stress which is caused by the structure temperature reduction is greatly evaluated by the usage of the cracking model which is nonlinear finite element and also plays an important role in the engineering project and practice.


1989 ◽  
Vol 16 (5) ◽  
pp. 627-649 ◽  
Author(s):  
Patrick Paultre ◽  
Daniel Castele ◽  
Suzanne Rattray ◽  
Denis Mitchell

The 1984 CSA standard for the design of concrete structures for buildings provided new seismic design and detailing requirements for concrete structures. Full-scale, reversed cyclic loading tests of reinforced concrete beam–slab–column subassemblages were carried out to investigate the seismic performance of frame structures designed with the latest Canadian code. The test results indicate the importance of including the influence of slab reinforcement in computing the beam capacity as well as the need to carefully design the joint regions for shear. The test results indicate the excellent performance of frame components designed with K = 0.7 (R = 4.0) and the poor performance of those designed and detailed with K = 2.0 (R = 1.5). The performance of subassemblages designed with K = 1.3 (R = 2.0) depends on the column to beam strength ratio and on the shear strength of the joints. Models to predict the flexural response as well as the shear response of key elements are described and the role of the spandrel beam in limiting the effective slab width is explained. Key words: seismic design, reinforced concrete, detailing, structures, codes.


Bauingenieur ◽  
2018 ◽  
Vol 93 (09) ◽  
pp. 333-341
Author(s):  
C. Butenweg ◽  
M. Marinkovic

Stahlbetonrahmentragwerke mit Mauerwerksausfachungen weisen nach Erdbebenereignissen häufig schwere Schäden auf, da die Ausfachungen ohne weitere konstruktive Maßnahmen mit vollem Kontakt zum Stahlbetonrahmen eingemauert werden. Durch die unplanmäßige Beteiligung am horizontalen Lastabtrag erfahren die Ausfachungen Belastungen in Wandebene und beeinflussen das globale Schwingungsverhalten der Rahmentragwerke. In Kombination mit den gleichzeitig auftretenden seismischen Trägheitskräften senkrecht zur Wand führt dies in vielen Fällen zu einem Versagen der mit niedrigen Festigkeiten ausgeführten Ausfachungen. Dies war der Anlass in dem europäischen Forschungsprojekt INSYSME ein Entkopplungssystem zu entwickeln, mit dem Rahmen und Ausfachung durch ein spezielles Profil aus Elastomeren entkoppelt werden. Das Profil ermöglicht Relativverschiebungen zwischen Rahmen und Ausfachung und stellt gleichzeitig die Aufnahme von Belastungen senkrecht zur Wand sicher. Der Beitrag erläutert zunächst den Aufbau des Systems und gibt einen Überblick über die in Kleinbauteilversuchen ermittelten Tragfähigkeiten. Zudem werden experimentelle Untersuchungen an mit hochwärmedämmenden Mauerziegeln ausgefachten Stahlbetonrahmen mit und ohne Entkopplungssystem für getrennte und kombinierte Belastungen in und senkrecht zur Wandebene vorgestellt. Auf Grundlage einer Versuchsauswertung und eines Ergebnisvergleichs werden Wirkungsweise und Effektivität des entwickelten Entkopplungssystems demonstriert.


2011 ◽  
Vol 50-51 ◽  
pp. 1003-1007 ◽  
Author(s):  
Jian Qiang Han ◽  
Zhen Bao Li ◽  
Xiao Sheng Song

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of this new prestressed precast reinforced concrete intelligent structure, by analyzing one prestressed precast reinforced concrete frame under low reversed cyclic load test. Prestressed precast reinforced concrete frame is a new assembly architecture intelligent structure. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. Experimental studies indicate that this new prestressed precast reinforced concrete intelligent structure has a good seismic performance. This prestressed precast reinforced concrete frame is a new kind of structural system complying with the development of architectural industrialization, which is worthy of popularization and application in the earthquake area.


Sign in / Sign up

Export Citation Format

Share Document