Study on the Rheological Effect Models of Fluid Magnetic Abrasive

2009 ◽  
Vol 416 ◽  
pp. 54-60
Author(s):  
Huan Wu Sun ◽  
Shi Chun Yang

The fluid magnetic abrasives (FMA) are a new type of precision finishing abrasives which are developed on the basis of the phase transition phenomenon caused by magnetic field. The rheological effect of FMA is the basis to achieve its finishing function, and has a great impact on the finishing capabilities and the final surface roughness. In order to get a better understanding of FMA finishing mechanism, the rheological effect models of FMA are deduced for the first time, the simulations and the experimental results are discussed as well in this paper.

2010 ◽  
Vol 135 ◽  
pp. 159-163
Author(s):  
Huan Wu Sun ◽  
Wei Yi Chen

The fluid magnetic abrasives (FMA) are a new type of precision finishing abrasives which are developed on the basis of the phase transition phenomenon caused by magnetic field. The sediment stability and agglomerative stability are significant characteristics of FMA, and have a great impact on the finishing capabilities and the final surface roughness value. In order to improve the stability of FMA, a new ingredient based on nanometer SiO2 is proposed, the preparation method and the experimental results are also discussed in this paper.


2008 ◽  
Vol 392-394 ◽  
pp. 45-49
Author(s):  
Huan Wu Sun ◽  
Shi Chun Yang

The fluid magnetic abrasives (FMA) are a new type of precision finishing abrasives, which can be used to finish the work-pieces with intricate or complex shape to a quite low surface roughness value. As a key parameter, the material removal rate has a great impact on the finishing capabilities and the final surface roughness. In order to get a better understand of FMA removal mechanism, the numerical analyses was used to simulate the shearing stress field and velocity distribution. The experimental results are discussed as well in this paper.


Author(s):  
Huanwu Sun ◽  
Shichun Yang

The fluid magnetic abrasive (FMA) is a new type of precision finishing abrasives, which is typically prepared by dispersing the magnetic particles, nonmagnetic abrasives, surfactants in a non-magnetizable carrier liquid. As the functional particles, the characteristics of magnetic particles have a great impact on the properties of FMA. In our experiment, the micron-sized carbonyl-iron (CI) particles (typical size: 3 μm–5 μm) are found to be ideally suited for the preparation of FMA. In this paper, the selections of micron-sized carbonyl-iron particles suitable for the FMA, the preparation techniques, the finishing mechanism and finishing process are presented. Some key parameters of FMA that may affect the finishing efficiency and the final surface roughness are analyzed theoretically. The experimental results are discussed as well in this paper.


2020 ◽  
Vol 9 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ibrahim Mahariq ◽  
Svetlana Beryozkina ◽  
Huda Mohammed ◽  
Hamza Kurt

The existence of magnetic field around high-voltage overhead transmission lines or low-voltage distribution lines is a known fact and well-studied in the literature. However, the interaction of this magnetic field either with transmission or distribution towers has not been investigated. Noteworthy it is to remember that this field is time-varying with a frequency of 50 Hz or 60 Hz depending on the country. In this paper, we studied for the first time the eddy currents in towers which are made of metals. As the geometrical structures of towers are extremely complex to model, we provide a simple approach based on principles of electromagnetism in order to verify the existence of power loss in the form of eddy currents. The frequency-domain finite difference method is adapted in the current study for simulating the proposed model. The importance of such a study is the addition of a new type of power loss to the power network due to the fact that some towers are made of relatively conductive materials.©2020. CBIORE-IJRED. All rights reserved


Author(s):  
Taichi Matsuoka

Authors have proposed a new type of vibration suppression device that utilizes variable inertia mass by fluid which acts as a series inertia mass. The series inertia mass is proportional to not only square of a ratio between a diameter of a piston cylinder and a by-pass pipe, and also a density of the fluid. The resisting force characteristics in case of water or turbine oil were measured. To confirm the proposed theory and investigate effects of vibration control, vibration tests of frequency response and seismic response of one-degree-of-freedom system with the test device were carried out. The experimental results were compared with the calculated results, and the effects of vibration suppression are confirmed experimentally and theoretically. In this paper, in order to derive the effect of a variable inertia mass by using a magnet-rheological fluid, resisting force characteristics of the test device are measured in several cases of magnetic field. The orifice of the by-pass pipe can be changed in virtual, since some rare-earth magnets are installed around the by-pass pipe. It can be seen from experimental results that the inertia force is increasing as stronger magnetic fields. It is pointed out that the variable inertia mass can be derived since clustered magnetic particles in the by-pass pipe act as a virtual orifice under strong magnetic field. The relation between magnetic flux and variable inertia mass are estimated experimentally.


Author(s):  
Andrew L Haynes ◽  
Clare E Parnell ◽  
Klaus Galsgaard ◽  
Eric R Priest

The heating of the solar corona is probably due to reconnection of the highly complex magnetic field that threads throughout its volume. We have run a numerical experiment of an elementary interaction between the magnetic field of two photospheric sources in an overlying field that represents a fundamental building block of the coronal heating process. The key to explaining where, how and how much energy is released during such an interaction is to calculate the resulting evolution of the magnetic skeleton. A skeleton is essentially the web of magnetic flux surfaces (called separatrix surfaces) that separate the coronal volume into topologically distinct parts. For the first time, the skeleton of the magnetic field in a three-dimensional numerical magnetohydrodynamic experiment is calculated and carefully analysed, as are the ways in which it bifurcates into different topologies. A change in topology normally changes the number of magnetic reconnection sites. In our experiment, the magnetic field evolves through a total of six distinct topologies. Initially, no magnetic flux joins the two sources. Then, a new type of bifurcation, called a global double-separator bifurcation , takes place. This bifurcation is probably one of the main ways in which new separators are created in the corona (separators are field lines at which three-dimensional reconnection takes place). This is the first of five bifurcations in which the skeleton becomes progressively more complex before simplifying. Surprisingly, for such a simple initial state, at the peak of complexity there are five separators and eight flux domains present.


Author(s):  
Guiling Xiao ◽  
Zhengcai Xia ◽  
Yujie Song ◽  
Lixia Xiao

Abstract We investigated the magnetic characteristics of Na2Co2TeO6 at different temperatures and magnetic field. The experimental results indicated that the magnetic field can disturb the antiferromagnetic interaction and lead to the disorder. Magnetization curves measured with different angles θ (θ is between the magnetic field direction and c axis) express the magnetocrystalline anisotropy in this system. when the angle θ=0 (magnetic field parallel to c axis), two continuous magnetic phase transitions at critical temperature TN1 and TN3 were observed. As θ changes, TN1 is almost independent on θ, indicating the magnetic ordering at TN1 was a spontaneous behavior with a robust AFM characteristic. On the other hand, as θ increases from 0 to 180, TN3 presents extreme value at θ=90 (magnetic field perpendicular to c axis). It indicates that TN3 were sensitive to temperature and magnetic fields. At some angles closing to ab plane, an additional phase transition was observed at TN2. This phase transition at TN2 may mainly result from the long range antiferromagnetic ordering within ab-plane. Furthermore, the magnetization measurement up to 50 T revealed the strong antiferromagnetic coupling in the system, and in which the magnetic coupling within the honeycomb layers is strong and the magnetic coupling interaction between honeycomb layers is weaker. Based on the experimental results, we have obtained the complete magnetic phase diagram.


2012 ◽  
Vol 522 ◽  
pp. 3-7
Author(s):  
Wei Dong Li ◽  
Ming Lv

The fluid magnetic abrasive (FMA) is a new type of intelligent material. The fluid magnetic abrasive (FMA) has typical liquid characteristics, when there is no external magnetic field around it. But when a strong magnetic field is applied, the viscosity of it will increase more than 100 times within a few milliseconds, and it will show the characteristics those are resemble to solid's. We call this feature as rheological property, of which because the workpiece can be finished by fluid magnetic abrasive (FMA). On base of researching on the micro-structure of fluid magnetic abrasive (FMA), the experiments and results are presented in this paper.


2010 ◽  
Vol 455 ◽  
pp. 211-215 ◽  
Author(s):  
H. Zhang ◽  
W.D. Li

The fluid magnetic abrasive (FMA) is a new type of precision finishing abrasives. The workpiece can be finished by fluid magnetic abrasive (FMA) because of its rheological property. On base of researching on the micro-structure of fluid magnetic abrasive (FMA), this paper analyzed the finishing mechanism. And the experiments and results are presented as well in this paper.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 952
Author(s):  
Qian Cong ◽  
Jin Xu ◽  
Jiaxiang Fan ◽  
Tingkun Chen ◽  
Shaofeng Ru

The present study investigates the adsorption performance and adsorption mechanism of Sinogastromyzon szechuanensis on different rough surfaces. The different positions of the sucker surface of Sinogastromyzon szechuanensis were observed by adopting the stereomicroscope and SEM. The observed results showed that the sucker of Sinogastromyzonszechuanensis had a multilevel structure of villi and groove. The anterior and posterior of Sinogastromyzonszechuanensis had different microscopic morphologies. The surface roughness of the adsorption substrate ranged from 7 μm to 188 μm. Adsorption strength of Sinogastromyzonszechuanensis and the conventional sucker on different rough surfaces were measured by a purposely designed device. The results showed that the back of Sinogastromyzonszechuanensis mainly provided the adsorption strength. The adsorption strength of the conventional sucker gradually decreased with surface roughness increasing, but the adsorption strength of Sinogastromyzon szechuanensis had not changed significantly. Based on the experimental results, the adsorption mechanism of Sinogastromyzonszechuanensis on the surface with different roughness was analyzed by the spectral function. The Sinogastromyzonszechuanensis sucker with a multilevel structure worked well on the rough surface, which led to Sinogastromyzonszechuanensis with a good sealing on the rough surface. The present work could help to develop a new type of sucker with effective adsorption performance on a rough surface to meet the needs of the engineering field.


Sign in / Sign up

Export Citation Format

Share Document