Finite Element Based Design of Piezoelectric Vibration Damper

2010 ◽  
Vol 442 ◽  
pp. 431-437 ◽  
Author(s):  
J.S. Bhatti ◽  
R.A. Pasha

Vibration control using combination of piezoelectric material and electrical circuits can remove the vibration energy from the host structure. The need for passive damping techniques arises to avoid the complexities and energy requirements associated with other vibration control techniques. Passive damping technique for reduction of vibration of structures by introduction of shunted piezoelectric patch is presented in this study. Finite element analysis is performed for a cantilever beam with shunted piezoelectric patch on it. The prediction of the model is validated against experimental published results. The obtained results demonstrate the feasibility of using piezoelectric patches with passive shunting as effective means for damping out the vibrations. The aim of this research work is the advancement of the coupled field analysis for structural vibration control with advanced methodology and to promote the design and analysis activities in the field of passive vibration control techniques using smart structures. Results obtained showed up to 86% reduction in the amplitude of the host structure which shows good agreement with published experimental results.

2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


2021 ◽  
Vol 71 (1) ◽  
pp. 58-64
Author(s):  
Raviduth Ramful

Abstract Full-culm bamboo has been used for millennia in construction. Specific connections are normally required to suit its unique morphology and nonuniform structure. Presently, the use of full-culm bamboo is limited in the construction industry as a result of a lack of information and test standards about the use and evaluation of full-culm connections. This study aims to further explore this area by investigating the failure modes in bamboo bolt connections in uniaxial tension by considering fiber direction in finite element analysis. Three types of bolt configurations of varying permutations, namely, single, dual, and orthogonal, were investigated. An orthotropic material was used as a constitutive model in finite element formulation to capture the inhomogeneity prevailing in bamboo culm. From the strain-field analysis of a hollow-inhomogeneous model representing bamboo, shear-out failure was dominant, as a localized area equivalent to the bolt diameter was affected due to high material orthotropy with high axial strength but weak radial and tangential strength. Bearing failure is assumed to precede shear-out failure at the bolt–bamboo contact interface, as the embedding strength was affected by localized strain concentration. The strain distribution in various bolt arrangements was found to vary between bolted connections of inhomogeneous-hollow geometry of bamboo and the ones of inhomogeneous-solid geometry representing timber. The observation in this study highlights the need for alternative design criteria to specifically assess the damage mechanism in bamboo connections.


2006 ◽  
Vol 129 (1) ◽  
pp. 58-65 ◽  
Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


2014 ◽  
Vol 663 ◽  
pp. 668-674
Author(s):  
Azman Senin ◽  
Zulkifli Mohd Nopiah ◽  
Muhammad Jamhuri Jamaludin ◽  
Ahmad Zakaria

The Finite-Element Analysis (FEA) is a prediction methodology that facilitates product designers produced the part design with manufacturing focused. With the similar advantages, manufacturing engineers are capable of build the first actual car model from the new production Draw Die. This approach has eliminated the requirement to manufacture the prototype model from soft tool parts and soft tool press die. However, the prediction accuracy of FEA is a major topic of research work in automotive sector's practitioners and academia as current accuracy level is anticipated at 60%. The objective of works is to assess the prediction accuracy on deformation results from mass production stamped parts. The Finite-element model is developed from the CAD data of the production tools. Subsequently, finite-element model for production tools is discretized with shell elements to avoid computation errors in the simulation process. The sheet blank material with 1.5 mm and 2.0 mm thickness is discredited by shell (2D modeling) and solid elements (3D modeling) respectively. The input parameters for the simulation model for both elements are attained from the actual setup at Press Machine and Production Tool. The analysis of deformation and plastic strain are performed for various setup parameters. Finally, the deformation characteristic such as Forming Limit Diagram (FLD) and thinning are compared for all simulated models.


2001 ◽  
Author(s):  
Ben Ting ◽  
Vincent P. Manno

Abstract For semiconductor lasers, fiber and optical source alignment is crucial for maintaining high optical transfer efficiency. Traditional optoelectronic manufacturing, production of butterfly packages for example, involves laser welding of fiber mountings followed by a tedious realignment procedure to reverse thermally-induced distortions. An alternate technique, laser hammering, entails manipulation of the fiber to light alignment through deformation of the fiber housing with high precision laser beams. A detailed understanding of the material and mechanical behavior, characteristics, and dynamic response is vital to successfully apply an efficient controller that can choose an optimal weld pattern based on a light to fiber misalignment. Modeling provides an effective means to determine an optimal fiber alignment control technique. Modeling is difficult due to the dynamic thermal-mechanical coupling of these processes. This paper presents the preliminary results of a series of parametric studies regarding thermal-mechanical coupling models employed in finite element analysis in order to assess the behavior and dynamic response of representative materials and geometries under various boundary conditions. Fiber ferrule and ferrule housing dimensions affect resistance to bending and torsion, which in turn governs the magnitude of the displacement field. The models are then applied to geometries typical of alignment fixtures used in laser diode packages. The effects of laser energy deposition location and resolution as well as assumed boundary and initial conditions are also discussed. Convection and the small variations in ferule geometry do not have a strong effect on the overall response.


Author(s):  
Goutam Roy ◽  
Brajesh Kumar Panigrahi ◽  
Goutam Pohit

In the present work, damage produced by a crack in a statically loaded beam is first evaluated. Subsequently, an attempt is made to repair the effect of the crack by attaching a piezoelectric patch to the beam as an actuator. Static analysis of PZT patched cracked beam along with rotational spring is performed using Ritz method. Subsequently, a finite element analysis is performed by using ABAQUS 6.12 to collate the analytical results. It is shown in the study that when PZT patch is subjected to external electric field, it yields a local reactive moment, which counters the crack effects. An equation is procured in order to compute the required actuation voltage for repairing of cracks. A parametric study is performed for various boundary conditions and loading patterns. It is distinctly noticed that the technique nullifies the discontinuity in slope curve which develops due to a crack.


Author(s):  
Saurabh Srivastava ◽  
Sachin Salunkhe ◽  
Sarang Pande ◽  
Bhavin Kapadiya

Steering knuckle connects steering system, suspension system and braking system to the chassis. The steering knuckle contributes a significant weight to the total weight of a vehicle. Increasing the efficiency of an automobile without compromising the performances is the major challenge faced by the manufacturers. This paper presents an effective topology optimization of steering knuckle used in a vehicle with the primary objective of minimizing weight. The study on optimization of knuckle is divided into two phases, the first phase involves making of a computer-aided design model of the original steering knuckle and carry out finite element analysis on the knuckle by estimating the loads, which are acting on the component. In the second phase, design optimization of the model of steering knuckle is carried out, and excess material is removed at the region where induced stress is negligible as obtained in finite element analysis assuming standard boundary and loading conditions. The paper describes a research work carried out to optimize structural topology giving the essential details. The methodology may be applied to optimize structural components used in applications where the ratio of desired properties to the cost, generally in terms of weight, is to be optimized. In the case of automobiles, strength to weight ratio has to be maximized. New researchers working in the area will have an understanding of the procedures, and further, the techniques may be applied to design in general.


2016 ◽  
Vol 5 (1) ◽  
pp. 31-38
Author(s):  
Arpan Gupta ◽  
O.P. Singh

Finite element modeling (FEM) plays a significant role in the design of various devices in the engineering field of automotive, aerospace, defense etc. In the recent past, FEM is assisting engineers and healthcare professional in analyzing and designing various medical devices with advanced functionality. Computer aided engineering can predict failure circumstances, which can be avoided for the health and well-being of people. In this research work, computer aided engineering analysis of human elbow is presented beginning with modeling of human elbow from medical image data, and predicting the stresses in elbow during carrying heavy loads. The analysis is performed by using finite element method. The results predict the stress level and displacement in the human bone during heavy weight lifting. Thus, it can be used to predict the safe load that a particular person can carry without bone injury. The present analysis focused on a particular model of bone for a particular individual. However, safe load can be determined for various age groups by generating more detailed model including tendons, ligaments and by using patient specific material properties.


Sign in / Sign up

Export Citation Format

Share Document