Study on Cutting Performance and Wear Mechanisms of Graded Ceramic Tool

2014 ◽  
Vol 490-491 ◽  
pp. 358-361
Author(s):  
Yan Zheng Li ◽  
Zhong De Shan ◽  
Jun Zhao ◽  
Jing Yun Xiong

In this paper, based on the experiments of high speed dry cutting nickel alloyed ductile iron with different nickel contents by graded ceramic tool, the cutting performance and wear mechanisms of graded ceramic tool were investigated. Results reveal that with the increase of cutting speed and nickel content the wear of graded ceramic tool is increased, wear mechanisms are transformated spalling and cohesive wear from abrasive wear, and chip shapes are turned into long arc segment from short segment.

2017 ◽  
Vol 749 ◽  
pp. 87-93
Author(s):  
Toshiyuki Obikawa ◽  
Masashi Yamaguchi

This paper describes the high speed air-jet-assisted machining of nickel-base superalloy with a SiC whisker reinforced alumina insert. This machining method showed already good performance in high speed machining of Inconel 718. In this paper, the influence of the application direction of coolant on the tool wear and tool life was investigated for obtaining much better cutting performance of the ceramic tool. The coolant was applied from the side of flank face with three different directions: two oblique directions from the end and side flank faces and the perpendicular direction to the cutting edges. In contrast, the application direction of the air jet was always perpendicular to the cutting edges. The experimental results showed that the best performance in the air-jet-assisted machining was obtained by applying coolant from the side of side flank at a cutting speed of 420 m/min and from the side of end flank at a cutting speed of 780 m/min. The necessary condition found for the best performance was that the size of notch wear was a little larger than that of flank wear.


2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


Author(s):  
Jae-Wook Oh ◽  
Hsin-Yu Kuo ◽  
Kevin Meyer ◽  
Roger Lindle ◽  
Howard Weaver ◽  
...  

At some cutting conditions chips formed during high-speed face turning of nickel based alloys are re-bonded to the machined workpiece surface, even when coolant is applied. Unfortunately, chip-rebonding reduces surface quality, which leads to a shorter fatigue lives for machined parts. Although several researchers have documented this phenomenon and its effects, the root causes of this phenomenon is currently unknown. In order to determine the root causes of chip rebonding, past test samples exhibiting chip rebonding were first analyzed. Metallographic analysis revealed that the chip rebonding material is the same as the workpiece material and that the bonding is mechanically driven. Next, screening design of experiments (DOE) were completed to reliably reproduce chip rebonding in dry cutting cases. Chip rebonding detection and severity were measured using multiple equally spaced surface roughness measurements (Rt parameter). In addition, in-process cutting forces and tool wear measurements were recorded and compared. Finally Taguchi methods were applied to identify the key variables their influence on chip-rebonding. In dry cutting tests it was found that decreasing feed-rate while cutting at a constant cutting speed is the most influential factor in obtaining chip rebonding. High-speed video revealed that at lower feed-rates the chip curls back to the surface of workpiece, while at higher feed-rates the chip flows away from the cutting region with minimal curl. Additional testing performed verifies this theory.


2010 ◽  
Vol 126-128 ◽  
pp. 653-657 ◽  
Author(s):  
Guang Ming Zheng ◽  
Jun Zhao ◽  
Xin Yu Song ◽  
Cao Qing Yan ◽  
Yue En Li

This paper explores the wear mechanisms of a Sialon ceramic tool in ultra high speed turning of Nickel-based alloy Inconel 718. Microstructures of the chips are also investigated. Stereo optical microscope and scanning electron microscope (SEM) are employed to observe worn surfaces of the tool produced by various wear mechanisms and morphological features of chips. In addition, the elemental compositions of wear products are evaluated by energy-dispersive X-ray spectroscopy (EDS). As a result of the study, wear mechanisms identified in the machining tests involve adhesive wear and abrasive wear. At the initial stage of cutting process, crater wear and flank wear are the main wear patterns. At the rapid wear stage, the SEM and EDS results showed that the adhered elements of Inconel 718 alloy on the tool rake face such as Ni, Fe and Cr accelerated the tool wear rate. Meanwhile, it was found that the chip morphology was serrated type under ultra high speed cutting condition, furthermore, the tendency of serration of the chip increased with the increase in cutting speed and feed rate.


2010 ◽  
Vol 455 ◽  
pp. 467-471
Author(s):  
Ji Ming Xiao ◽  
Yan Li ◽  
L.J. Bai ◽  
Qi Long Yuan ◽  
Jian Ming Zheng

The graphite-like carbon (GLC) coating was deposited onto high-speed steel (HSS) twist drills by magnetron sputter ion plating technique. The drilling tests were performed on the ferrous metal under dry cutting conditions. By the analysis and comparison of the flank wear and the drilling forces on drills, the cutting performance of GLC coated HSS tools was researched. The results show that GLC coating with high hardness and low friction coefficient, due to its good adhesion and match with HSS substrate, can significantly improve the cutting performance of HSS twist drills, prolong the tool life, decrease the drilling forces in drilling the ferrous metal. And its cutting performance is better than the hard coated drills in the lower speed, but its thermal stability is inferior to the hard coated drills in the higher speed.


2012 ◽  
Vol 500 ◽  
pp. 105-110 ◽  
Author(s):  
Huai Zhong Li ◽  
Jun Wang

nconel 718 is one of the most commercially important superalloys but with very poor machinability. It has a very high yield stress and a high tendency to adhesion and work-hardening. A recent trend of improving the machining processes of difficult-to-cut materials is to move towards dry cutting operations. This paper presents an experimental study of the cutting forces in high speed dry milling of Inconel 718 using a milling cutter with coated carbide inserts. It is found that the peak cutting forces increase with an increase in chip load in a nonlinear way, but cutting speed does not show a significant influence on the cutting force for the range of cutting speeds tested in this study.


2012 ◽  
Vol 562-564 ◽  
pp. 619-622
Author(s):  
Ji Ming Xiao ◽  
Li Jing Bai ◽  
Yan Li ◽  
Jian Ming Zheng ◽  
Qi Long Yuan

High-speed steel (HSS) turning tools was designed and sharpened according to the angles of the complex shape cutting tools. CrAlTiN coating was deposited using unbalance magnetron sputtering plating technique. By dry turning tests, the wear characteristics and wear mechanisms of the face were investigated. The results show that the face wear of the coated HSS tools is obviously different from that of the uncoated tools, the crater width is smaller, the boundary is jagged and the lowest position is away from the major cutting edge. Adhesive wear and local adhesive wear are the main wear mechanisms.


2010 ◽  
Vol 443 ◽  
pp. 318-323 ◽  
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou

A multi-scale and multi-phase nanocomposite ceramic cutting tool material Al2O3/TiC/TiN(LTN) with high comprehensive mechanical properties has been successfully fabricated by means of adding micro-scale TiC and nano-scale TiN particles. The cutting performance and wear mechanisms of this advanced ceramic cutting tool were researched by turning two kinds of hardened steel 40Cr and T10A respectively. Compared with the commercial ceramic tool LT55, LTN showed a superior wear resistance with certain machining parameters. The machining tests indicated that the new materials tool is suitable for continuously dry cutting of hardened steel with high hardness at high speed.


Sign in / Sign up

Export Citation Format

Share Document