Focused Ion Beam Nano-Precision Machining for Analyzing Photonic Structures in Butterfly

2010 ◽  
Vol 447-448 ◽  
pp. 174-177 ◽  
Author(s):  
Hou Xiao Wang ◽  
Wei Zhou ◽  
Er Ping Li

Nano-precision machining using focused ion beam (FIB) is widely applied in many fields. So far, FIB-based nanofabrication for specific nanoscale applications has become an interesting topic to realize more diversities for nano-construction. Through FIB machining, we can easily achieve the required nano- and micro-scale patterning, device fabrication, and preparation of experimental samples. Nowadays, there is an increasing trend to learn from nature to design novel multi-functional materials and devices. Thus, more interestingly, another advantage of FIB is that it can be conveniently used to analyze the natural photonic structures, e.g., those in the butterfly which exhibits amazing optical phenomena due to sub-wavelength structural color. Accordingly, in the present study, structural analyses for butterfly wings were carried out using FIB. It is found that the photonic structures for the backside and frontside of the butterfly wing studied differ considerably. The difference accounts for the different colors on the dorsal and ventral sides of butterfly wings.

2013 ◽  
Vol 753-755 ◽  
pp. 2578-2581
Author(s):  
Yan Chen ◽  
Li Bao An ◽  
Xiao Xia Yang

Ultra-precision machining is used for many engineering applications where the traditional processes fail to work. Focused ion beam (FIB) technology is a very important part of the ultra-precision machining. It can realize the precise positioning, microscopic observation and micro machining. This paper introduces the FIB system and its application. FIB system contains ion source, focusing and scanning equipment and sample station. FIB technique has many unique and important functions. It is widely used in semiconductor device fabrication and circuit failure analysis. It can realize sample etching, imaging, thin film deposited, ion implantation and micromachining.


Microscopy ◽  
2020 ◽  
Author(s):  
Kazuo Yamamoto ◽  
Satoshi Anada ◽  
Takeshi Sato ◽  
Noriyuki Yoshimoto ◽  
Tsukasa Hirayama

Abstract Phase-shifting electron holography (PS-EH) is an interference transmission electron microscopy technique that accurately visualizes potential distributions in functional materials, such as semiconductors. In this paper, we briefly introduce the features of the PS-EH that overcome some of the issues facing the conventional EH based on Fourier transformation. Then, we present a high-precision PS-EH technique with multiple electron biprisms and a sample preparation technique using a cryo-focused-ion-beam, which are important techniques for the accurate phase measurement of semiconductors. We present several applications of PS-EH to demonstrate the potential in organic and inorganic semiconductors and then discuss the differences by comparing them with previous reports on the conventional EH. We show that in situ biasing PS-EH was able to observe not only electric potential distribution but also electric field and charge density at a GaAs p-n junction and clarify how local band structures, depletion layer widths, and space charges changed depending on the biasing conditions. Moreover, the PS-EH clearly visualized the local potential distributions of two-dimensional electron gas (2DEG) layers formed at AlGaN/GaN interfaces with different Al compositions. We also report the results of our PS-EH application for organic electroluminescence (OEL) multilayers and point out the significant potential changes in the layers. The proposed PS-EH enables more precise phase measurement compared to the conventional EH, and our findings introduced in this paper will contribute to the future research and development of high-performance semiconductor materials and devices.


1999 ◽  
Vol 4 (S1) ◽  
pp. 769-774 ◽  
Author(s):  
C. Flierl ◽  
I.H. White ◽  
M. Kuball ◽  
P.J. Heard ◽  
G.C. Allen ◽  
...  

We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RIE) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching – a well-established technique for optical mask repair and for IC failure analysis and repair – without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5 × 10−4 μm3/pC. At a current of 3nA, for example, this corresponds to an each rate of 1.05 μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1 μm. Change in the roughness of the etched surface plane stay below 8nm.


2015 ◽  
Vol 665 ◽  
pp. 169-172
Author(s):  
Yoshimasa Takahashi ◽  
Hikaru Kondo ◽  
Kazuya Aihara ◽  
Masanori Takuma ◽  
Kenichi Saitoh ◽  
...  

The strength against interfacial fracture initiation from a free-edge of Si/Cu micro-components was evaluated. The micro-scale cantilever specimens containing dissimilar interfaces were fabricated with a focused-ion-beam (FIB) technique, and they were loaded with a quantitative nanoindenter holder operated in a transmission electron microscope (TEM). The specimens were successfully fractured along the Si/Cu interface, and the critical loads at fracture were measured. The critical stress distribution near the free-edge was evaluated with the finite element method (FEM). The near-edge stress distributions of 90°/90°-shaped specimens were scattered while those of 135°/135°-shaped specimens were in good agreement despite the difference in specimen dimensions. Such a difference was discussed in terms of the relation between the magnitude of stress singularity and the microstructures of material.


2001 ◽  
Vol 57-58 ◽  
pp. 891-896 ◽  
Author(s):  
S. Rennon ◽  
L. Bach ◽  
H. König ◽  
J.P. Reithmaier ◽  
A. Forchel ◽  
...  

2005 ◽  
Vol 864 ◽  
Author(s):  
Wei Liu ◽  
Aime Fausz ◽  
John Svoboda ◽  
Brian Butcher ◽  
Rick Williams ◽  
...  

AbstractAuger Electron Spectroscopy (AES) is one of the few techniques that has surface sensitivity and small analysis volume to make it the ideal analytical technique for the compositional characterization of submicron defects. However, the integration of defect inspections at only a few processing steps during device fabrication results in the detection of many buried defects. In order to identify these defects, it is necessary to determine their composition. Combined with Focused Ion Beam (FIB) technique to expose the cross section of the buried defect, Auger analysis provides accurate identification of buried defects that are critical for quickly ramping to higher yields and recovering from yield excursions. This paper reports two examples of the use of AES combined with FIB to diagnose processing problems.


2005 ◽  
Vol 11 (6) ◽  
pp. 1292-1298 ◽  
Author(s):  
Y.K. Kim ◽  
A.J. Danner ◽  
J.J. Raftery ◽  
K.D. Choquette

Sign in / Sign up

Export Citation Format

Share Document