Design, Model on MATLAB and Realization by C Language about Repetitive Control

2011 ◽  
Vol 467-469 ◽  
pp. 1438-1443
Author(s):  
Hu Huang ◽  
Jia Fen He

Voltage waveform distortion of Aeronautical Static Inverter (ASI) has a solution, which is the repetitive control technology. In this paper, have established the model of repetitive control system; have stated its principles and method of parameter design; have proved the stability of repetitive control system; have verified the validity of it in MATLAB software; finally have established its C language procedure.

2011 ◽  
Vol 121-126 ◽  
pp. 1982-1986
Author(s):  
Ping Wang ◽  
Liu Ye Chen ◽  
Chao Qun Wang

The paper proposes the design method of output filter and repetitive controller of inverter in stand-alone PV system. The design of filter considers the impact of filter on the inverter main circuit in order to increase the stability of the inverter. For the serious waveform distortion when the inverter runs independently with non-liner load, the circuit introduces repetitive control and presents a new parameter design method of repetitive controller. The simulation results prove that the design method is correct and feasible.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650061 ◽  
Author(s):  
Zhen Shao ◽  
Zhengrong Xiang

This paper concerns the design of an observer-based repetitive control system (RCS) to improve the periodic disturbance rejection performance. The periodic disturbance is estimated by a repetitive learning based estimator (RLE) and rejected by incorporation of the estimation into a repetitive control (RC) input. Firstly, the configuration of the observer-based RCS with the RLE is described. Then, a continuous–discrete two-dimensional (2D) model is built to describe the RCS. By choosing an appropriate Lyapunov functional, a sufficient condition is proposed to guarantee the stability of the RCS. Finally, a numerical example is given to verify the effectiveness of the proposed method.


2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775178
Author(s):  
Wu-Sung Yao

In general, eccentric gravity machinery is a rotation mechanism with eccentric pendulum mechanism, which can be used to convert continuously kinetic energy generated by gravity energy to electric energy. However, a stable rotated velocity of the eccentric gravity machinery is difficult to be achieved only using gravity energy. In this article, a stable velocity control system applied to eccentric gravity machinery is proposed. The dynamic characteristic of eccentric gravity machinery is analyzed and its mathematical model is established, which is used to design the controller. A stable running velocity of the eccentric gravity machinery can be operated by the controlled servomotor. Due to disturbances being periodic, repetitive controller is installed to velocity control loop. The stability performance and control performance of the repetitive control system are discussed. The iterative algorithm of the repetitive control is executed by a digital signal processor TI TMS320C32 floating-point processor. Simulated and experimental results are reported to verify the performance of the proposed eccentric gravity machinery control system.


Author(s):  
Min Wu ◽  
Pan Yu ◽  
Xin Chen ◽  
Jinhua She

This paper concerns a repetitive-control system with an input-dead-zone (IDZ) nonlinearity. First, the expression for the IDZ is decomposed into a linear term and a disturbance-like one that depends on the parameters of the dead zone. A function of the system-state error is used to approximate the combination of the disturbancelike term and an exogenous disturbance. The estimate is used to compensate for the overall effect of the IDZ and the exogenous disturbance. Next, the state-feedback gains are obtained from a linear matrix inequality that contains two tuning parameters for adjusting control performance; and the pole assignment method is employed to design the gain of a state observer. Then, two stability criteria are used to test the stability of the closed-loop system. The method is simple, employing neither an inverse model of the plant nor an adaptive control technique. It is also robust with regard to the different parameters of the IDZ, uncertainties in the plant, and the exogenous disturbance. Finally, two numerical examples demonstrate the effectiveness of this method and its advantages over others.


2010 ◽  
Vol 36 ◽  
pp. 233-242 ◽  
Author(s):  
Yoshinori Ando ◽  
Kou Yamada ◽  
Nobuaki Nakazawa ◽  
Takaaki Hagiwara ◽  
Iwanori Murakami ◽  
...  

In this paper, we examine the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants. The modified repetitive control system is a type of servomechanism designed for a periodic reference input. When modified repetitive control design methods are applied to real systems, the influence of uncertainties in the plant must be considered. The stability problem with uncertainty is known as the robust stability problem. Recently, the parameterization of all stabilizing modified repetitive controllers was obtained. Since the parameterization of all stabilizing modified repetitive controllers was obtained, we can express previous study of robust stabilizing modified repetitive controller in a uniform manner and can design a stabilizing modified repetitive controller systematically. However, the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants has not been obtained. In this paper, we clarify the parameterization of all robust stabilizing modified repetitive controllers for time-delay plants.


2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Sign in / Sign up

Export Citation Format

Share Document