Predictive Control of the VAV System Based on Recurrent Wavelet Neural Network

2011 ◽  
Vol 467-469 ◽  
pp. 928-933
Author(s):  
Jie Jia Li ◽  
Ben Wang ◽  
Xiao Yan Guo ◽  
Lu Lu Sun

An air supply control method of VAV system based on BP neural network is proposed in this paper, which combines with the recurrent wavelet neural network model, predictive control and optimization of parameters. With the proposed method, the air volume of the VAV system can be controlled accurately even if the change of the air is nonlinear and time-lapse. Compared with tradition control method, it has the advantages of rapidly converging, high control precision, strong skills of learning and wide application prospect.

2014 ◽  
Vol 1044-1045 ◽  
pp. 881-884
Author(s):  
Xin Wang ◽  
He Pan

In the thesis the adaptive ability of neural network strong and good nonlinear approximation ability, A controller is designed based on BP neural network by the adaptive ability of neural network strong and good nonlinear approximation ability in this paper, this method changed defect of the usual PID controller that parameters of annealing furnace condition are not easy set and the ability to adapt is poor. The new method is not only has good stability, but also has high control precision and strong adaptability.


2013 ◽  
Vol 303-306 ◽  
pp. 1257-1260 ◽  
Author(s):  
Chun Ning Song ◽  
Wen Han Zhong

The second carbonation in the clarifying process of sugar cane juice is a dynamic nonlinear system which has the characteristics of strong non-linearity, multi-constraint, large time-delay, multi-input and other characteristics of complex nonlinear systems. In this paper, BP neural network is applied to the model of the second carbonation clarifying process of sugar cane juice. The generalized predictive control algorithm is employed to the optional control of color value in clarifying process of second carbonation. The result of Matlab simulation shows that generalized predictive control algorithm based on BP neural network implement the optimal control of the second carbonation with strong robustness and high control precision.


2013 ◽  
Vol 820 ◽  
pp. 117-121 ◽  
Author(s):  
Song Li ◽  
Jin Chun Song ◽  
Guan Gan Ren ◽  
Yan Cai

A mechanical transmission equipment of traditional straightening machine for plates are driven by worm gear and worm, which causes small straightening force, slow pressing speed and low control precision. However, screwdown control system of straightening machine can be driven by hydraulic system, which will lead to large straightening force, rapid pressing speed and high control precision. This system was designed for straightening machine with nine rolls for plates, its transfer function was deduced, and the analysis on its stability and time response was conducted. A BP neural network PID controller was utilized in the system for improving dynamic characteristics. It can be concluded that the system responds rapidly, and stability and control precision are high if BP neural network PID controller is used in the system.


2011 ◽  
Vol 383-390 ◽  
pp. 2242-2248
Author(s):  
Yan Ping Wang

This paper presents the algorithm of model predictive control (MPC) based on BP neural network to the burden system of the heating boiler. Because the burden system of the heating boiler is complex, the proposed approach uses steady, effective way to control the boiler. There is a closed-loop, repeating online optimization, model-based control algorithm which deals with the feedback information and the quantity of the fuel entering the boiler by the way of multi-step future predicting and compensating based on BP neural network. By simulation, it is demonstrated that the burden system of the heating boiler using MPC as control method is better in performance than the traditional PID. Besides, it is compliant to the model of the controlled object, especially to those which parameters of the model are variable.


2013 ◽  
Vol 385-386 ◽  
pp. 831-834
Author(s):  
Jie Zhang ◽  
Jian Min Wang ◽  
Zhi Gang Yang ◽  
Yan Jiao Li

Grinding-classification process is key links in beneficiation production; the mill load control due to the presence of large inertia lag problem, so rely on the conventional PID control is difficult to achieve the expected control effect. Based on the conventional PID control, combined the Fuzzy control and the Smith predictive control, putting forward a kind of Fuzzy+Smith+PID control method. Through MATLAB simulation study shows that, compared with the conventional PID control, the new control method has the advantages of short regulating time, small overshoot, high control precision and no steady state error.


2021 ◽  
Vol 11 (6) ◽  
pp. 2685
Author(s):  
Guojin Pei ◽  
Ming Yu ◽  
Yaohui Xu ◽  
Cui Ma ◽  
Houhu Lai ◽  
...  

A compliant constant-force actuator based on the cylinder is an important tool for the contact operation of robots. Due to the nonlinearity and time delay of the pneumatic system, the traditional proportional–integral–derivative (PID) method for constant force control does not work so well. In this paper, an improved PID control method combining a backpropagation (BP) neural network and the Smith predictor is proposed. Through MATLAB simulation and experimental validation, the results show that the proposed method can shorten the maximum overshoot and the adjustment time compared with traditional the PID method.


2011 ◽  
Vol 201-203 ◽  
pp. 276-280
Author(s):  
Ya Peng Liu ◽  
Yan Tang ◽  
Jia Bin Bi

In this paper, a 4WS control method based on BP neural network was introduced. It used the BP neural network to simulate the map of vehicle and the nonlinear dynamic characteristics of the tire to avoid large errors that relying on mathematical simulation model of the problem. The 4WS measured data of Tokyo institute of Technology institute of Japan was used and used BP neural network method to identify the nonlinear characteristics of vehicle and tires. System controller’s design is not based on any theoretical method, but on the BP neural network’s self-learning ability. Experimental results show that this method has good controlling characteristics, and it can improve the vehicle’s active safety and manipulating stability effectively.


2013 ◽  
Vol 310 ◽  
pp. 557-559 ◽  
Author(s):  
Li Ji ◽  
Xiao Fei Lian

For a blow-off tunnel running, there is the large delay and lag issues. We build a mathematical model of the wind tunnel Mach number control by the test modeling method, then analyse the pros and cons of various control methods based on BP neural network control algorithm. Put forward genetic algorithm optimization neural network adaptive control method to solve the large inertia of the wind tunnel system, and large delay. A large number of simulation studies, run a variety of operating conditions for the wind tunnel simulation proved that the improved adaptive neural network PID control method is reasonable and effective.


Sign in / Sign up

Export Citation Format

Share Document