Atomically Controlled Plasma Processing for Group IV Quantum Heterostructure Formation

2011 ◽  
Vol 470 ◽  
pp. 98-103 ◽  
Author(s):  
Masao Sakuraba ◽  
Katsutoshi Sugawara ◽  
Junichi Murota

By low-temperature epitaxial growth of group IV semiconductors utilizing electron-cyclotron-resonance (ECR) plasma enhanced chemical vapor deposition (CVD), atomically controlled plasma processing has been developed in order to achieve atomic-layer doping and heterostructure formation with nanometer-order thickness control as well as smooth and abrupt interfaces. In this paper, typical recent progress in plasma processing is reviewed as follows: (1) By N and B atomic-layer formation and subsequent Si epitaxial growth on Si(100) without substrate heating, heavy atomic-layer doping was demonstrated. Most of the incorporated N or B atoms can be confined in about a 2-nm-thick region of the atomic-layer doped Si film. (2) Using an 84 % relaxed Ge buffer layer formed on Si(100) by ECR plasma enhanced CVD, formation of a B-doped highly strained Si film with nanometer-order thickness was achieved and hole mobility enhancement as high as about 3 was observed in the highly strained Si film.

1994 ◽  
Vol 339 ◽  
Author(s):  
Donald R. Gilbert ◽  
Rajiv Singh ◽  
W. Brock Alexander ◽  
Dong Gu Lee ◽  
Patrick Doering

ABSTRACTWe have used an electron cyclotron resonance plasma system to perform chemical vapor deposition experiments on single-crystal, (110) oriented diamond substrates. The depositions were carried out at 0.060 Torr using mixtures of methanol in hydrogen. Substrate temperatures were varied from approximately 620 to 800 °C The film morphology was examined using SEM and microstructural phase determination was attempted using micro-Raman spectroscopy. Based on the results of these experiments, we have determined general trends for the characteristics of films deposited on diamond from the ECR plasma at low pressures and temperatures.


1996 ◽  
Vol 452 ◽  
Author(s):  
J. P. Conde ◽  
P. Brogueira ◽  
V. Chu

AbstractAmorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition were submitted to thermal annealing and to RF and electron-cyclotron resonance (ECR) hydrogen plasmas. Although the transport properties of the films did not change after these post-deposition treatments, the power density of a Ar+ laser required to crystallize the amorphous silicon films was significantly lowered by the exposure of the films to a hydrogen plasma. This decrease was dependent on the type of hydrogen plasma used, being the strongest for an ECR plasma with the substrate held at a negative bias, followed by an ECR hydrogen plasma with the substrate electrode grounded, and finally by an RF hydrogen plasma.


1996 ◽  
Vol 433 ◽  
Author(s):  
Y. Kato ◽  
H. Yabuta ◽  
S. Sone ◽  
H. Yamaguchi ◽  
T. Iizuka ◽  
...  

AbstractPhysical and electrical properties are investigated for (Ba, Sr)TiO3 (BST) films prepared by electron cyclotron resonance (ECR) plasma chemical vapor deposition (CVD) at relatively low temperatures, between 450 °C and 500 °C. The crystallinity of BST, estimated by X-ray diffraction and from the grain size, is greatly improved when the temperature is raised from 450 °C to 500 °C. Also better crystallinity is obtained for films grown at a deposition rate of 1.1 nn/min than at 2.7 nm/min. The mass transport rates of metal organic sources under our deposition conditions are estimated. The BST film composition is precisely controlled using the results of the investigation on mass transport. At near stoichiometric composition, i.e., (Ba+Sr)/Ti=0.97, and Ba/(Ba+Sr)=0.4, the films grown at 500 °C are found to have the largest dielectric constant, measured using flat capacitors with Pt bottom electrodes. A dielectric constant of 160 is obtained for 27 nm thick films grown at 500 °C and at 1.1 nm/min, without post-deposition annealing. These films exhibit the smallest SiO2 equivalent thickness of 0.65 nm and a leakage current density of 4.6x10−7 A/cm2 at plus IV.


1997 ◽  
Vol 467 ◽  
Author(s):  
J. P. Conde ◽  
V. Chu ◽  
F. Giorgis ◽  
C. F. Pirrt ◽  
S. Arekat

ABSTRACTHydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition. Hydrogen is introduced into the source resonance cavity as an excitation gas. Silane is introduced in the main chamber in the vicinity of the plasma stream, whereas the carbon source gases, methane or ethylene, are introduced either with the silane or with the hydrogen as excitation gases. The effect of the type of carbon-source gas, excitation gas mixture and silane-to-carbon source gas flow ratio on the deposition rate, bandgap, subgap density of states, spin density and hydrogen evolution are studied.


Sign in / Sign up

Export Citation Format

Share Document