Low Temperature Fabrication of (Ba, Sr)TiO3 Thin Films by ECR Plasma CVD

1996 ◽  
Vol 433 ◽  
Author(s):  
Y. Kato ◽  
H. Yabuta ◽  
S. Sone ◽  
H. Yamaguchi ◽  
T. Iizuka ◽  
...  

AbstractPhysical and electrical properties are investigated for (Ba, Sr)TiO3 (BST) films prepared by electron cyclotron resonance (ECR) plasma chemical vapor deposition (CVD) at relatively low temperatures, between 450 °C and 500 °C. The crystallinity of BST, estimated by X-ray diffraction and from the grain size, is greatly improved when the temperature is raised from 450 °C to 500 °C. Also better crystallinity is obtained for films grown at a deposition rate of 1.1 nn/min than at 2.7 nm/min. The mass transport rates of metal organic sources under our deposition conditions are estimated. The BST film composition is precisely controlled using the results of the investigation on mass transport. At near stoichiometric composition, i.e., (Ba+Sr)/Ti=0.97, and Ba/(Ba+Sr)=0.4, the films grown at 500 °C are found to have the largest dielectric constant, measured using flat capacitors with Pt bottom electrodes. A dielectric constant of 160 is obtained for 27 nm thick films grown at 500 °C and at 1.1 nm/min, without post-deposition annealing. These films exhibit the smallest SiO2 equivalent thickness of 0.65 nm and a leakage current density of 4.6x10−7 A/cm2 at plus IV.

1996 ◽  
Vol 422 ◽  
Author(s):  
P. S. Andry ◽  
W. J. Varhue ◽  
E. Adams ◽  
M. Lavoie ◽  
P. B. Klein ◽  
...  

AbstractEpitaxial growth of Er-doped silicon films has been performed by plasma-enhanced chemical vapor deposition at low temperature (430°C) using an electron cyclotron resonance source. The goal was to incorporate an optically active center, erbium surrounded by nitrogen, through the use of the metal organic compound tris (bis trimethyl silyl amido) erbium. Films were analyzed by Rutherford backscatter spectrometry, secondary ion mass spectroscopy and high resolution x-ray diffraction. The characteristic 1.54 μm emission was observed by photoluminescence spectroscopy. Previous attempts to incorporate the complex (ErO6) using tris (2,2,6,6-tetramethyl-3,5-heptanedionato) erbium (III) indicated that excessive interstitial carbon lowered epitaxial quality and reduced photoluminescent intensity. In this study, much of the carbon was introduced onto substitutional sites maintaining good epitaxial growth. A response surface method was employed to find the plasma growth parameters yielding the highest quality luminescent films. Luminescent intensity increased for anneals up to 600°C but decreased at higher temperatures.


1997 ◽  
Vol 476 ◽  
Author(s):  
Jeremy A. Theil ◽  
Francoise Mertz ◽  
Micah Yairi ◽  
Karen Seaward ◽  
Gary Ray ◽  
...  

AbstractAmorphous carbon films grown with fluorohydrocarbons can be grown to have dielectric constant values around 2.0. The behavior of these films when subjected to thermal excursion is studied. We have investigated material deposited in an ECR plasma, and find that the F:H ratio of the gas mixture is a good guide to material properties. Films deposited at 5°C were placed in a vacuum chamber at 400°C as long as 60 minutes. The film thickness, dielectric constant, and infrared absorption spectrum change with the F:H ratio of the incoming gas and thermal cycling. It was found that the dielectric constant and loss tangent decrease upon heating and that there is an apparent increase in C=C groups. As expected, as the F:H ratio increases, the dielectric constant and thermal stability decrease. Good thermal stability is shown for F:H ratios of 1.5, which result in films with a dielectric constant of ∼2.4 after heating.


1989 ◽  
Vol 164 ◽  
Author(s):  
Y. Hamakawa ◽  
Y. Matsumoto ◽  
G. Hirata ◽  
H. Okamoto

AbstractA review is given of the electrical and optical properties of hydrogenated microcrystalline silicon carbide (μc-SiC:H) films prepared by ECR (Electron Cyclotron Resonance) plasma chemical vapor deposition. The material produced with the ECR plasma technology has a very wide energy gap from 2 to 2.8 eV with good valency electron controllability, e.g., a dark conductivity as high as 10 Scmg− which is more than seven orders of magnitude larger than that of amorphous SiC:H.Employing this material as a wide gap heterojunction window, 15.4% and 12.0% conversion efficiencies have been achieved with the structures of ITO/p type μc-SiC:H/n type poly-Si and p type vc-SiC:H/i type a-Si:H/n type Pc-Si:H heterojunction solar cells, respectively. The successful development of a visible light thin film light emitting diode show the promise of microcrystalline materials for optoelectronic applications.


2020 ◽  
Author(s):  
Laurent Souqui ◽  
Justinas Palisaitis ◽  
Hans Högberg ◽  
Henrik Pedersen

<div> <p>Amorphous boron-carbon-nitrogen (B-C-N) films with low density are potentially interesting as alternative low-dielectric-constant (low-κ) materials for future electronic devices. Such applications require deposition at temperatures below 300 °C, making plasma chemical vapor deposition (plasma CVD) a preferred deposition method. Plasma CVD of B-C-N films is today typically done with separate precursors for B, C and N or with precursors containing B–N bonds and an additional carbon precursor. We present an approach to plasma CVD of B-C-N films based on triethylboron (B(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>) a precursor with B-C bonds in an argon-nitrogen plasma. From quantitative analysis with Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA), we find that the deposition process can afford B-C-N films with a B/N ratio between 0.98 and 1.3 and B/C ratios between 3.4 and 8.6 and where the films contain between 3.6 and 7.8 at. % H and 6.6 and 20 at. % of O. The films have low density, from 0.32 to 1.6 g/cm<sup>3</sup> as determined from cross-section scanning electron micrographs and ToF-ERDA with morphologies ranging from smooth films to separated nanowalls. Scaning transmission electron microscopy shows that C and BN does not phase seperarte in the film. The static dielectric constant κ, measured by capacitance–voltage measurements<b>,</b> varies with the Ar concentration in the range from 3.3 to 35 for low and high Ar concentrations, respectively. We suggest that this dependence is caused by the energetic bombardment of plasma species during film deposition.</p> </div> <br>


2018 ◽  
Vol 934 ◽  
pp. 8-12
Author(s):  
Jian Guo Zhao ◽  
Xiong Zhang ◽  
Jia Qi He ◽  
Shuai Chen ◽  
Zi Li Wu ◽  
...  

A serious of non-polar a-plane AlGaN-based multiple quantum wells (MQWs) were successfully grown on the semi-polar r-plane sapphire substrate with metal organic chemical vapor deposition technology. Intense MQWs-related emission peaks at an emission wavelength covered from 277-294 nm were observed based on the photoluminescence measurement. It was found that the employment of the trimethyl-aluminum (TMAl) flow duty-ratio modulation method which was developed based on the two-way pulsed-flows growth technique played a crucial role to control the Al composition of the non-polar a-plane AlGaN epi-layers. The non-polar a-plane AlGaN-based MQWs were deposited with the new developed TMAl flow duty-ratio modulation technique. Evident-3th order X-ray diffraction (XRD) satellite peak was observed from the high resolution-XRD measurement, proving the successful growth of non-polar a-plane AlGaN-based MQWs with abrupt hetero-interfaces.


2019 ◽  
Vol 196 ◽  
pp. 00053
Author(s):  
Alexandr Zamchiy ◽  
Evgeniy Baranov

The a-SiOx:H thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method with different stoichiometry (x=0.15-1.0) for different SiH4 flow rates. The concentration of hydrogen in the films increases with the growth rate in ranges from 1.5 to 4.8 at.%. Further annealing leads to the effusion of hydrogen from the structure of the material and the compression of the structure, which leads to a reduction in the thickness for all films. X-ray diffraction measurements showed that the as-deposited films crystallized to form nc-Si about 4-8 nm in size after annealing at 1000°C.


2000 ◽  
Vol 637 ◽  
Author(s):  
F. Niu ◽  
A.R. Teren ◽  
B.H. Hoerman ◽  
B.W. Wessels

AbstractEpitaxial ferroelectric BaTiO3 thin films have been developed as a material for microphotonics. Efforts have been directed toward developing these materials for thin film electro-optic modulators. Films were deposited by metalorganic chemical vapor deposition (MOCVD) on both MgO and silicon substrates. The electro-optic properties of the thin films were measured. For BaTiO3 thin films grown on (100) MgO substrates, the effective electro-optic coefficient, reff depended on the magnitude and direction of the electric field. Coefficients as high as 260 pm/V have been measured. Investigation of BaTiO3 films on silicon has been undertaken. Epitaxial BaTiO3 thin films were deposited by MOCVD on (100) MgO layers grown on silicon (100) substrates by metal-organic molecular beam epitaxy (MOMBE). The MgO serves as the low index optical cladding layer as well as an insulating layer. X-ray diffraction and transmission electron microscopy (TEM) indicated that BaTiO3 was epitaxial with an orientational relation given by BaTiO3 (100)//Si (100) and BaTiO3[011]//Si [011]. Polarization measurements indicated that the BaTiO3 epitaxial films on Si were in the ferroelectric state.


Sign in / Sign up

Export Citation Format

Share Document