Development of Deburring Technology with Whirling EDM - Influence of the Motor Rotational Speed Control Conditions and the Electrical Conditions on the Machining Characteristics

2012 ◽  
Vol 523-524 ◽  
pp. 293-298
Author(s):  
Atsushi Nakayama ◽  
V. Lertphokanon ◽  
Minoru Ota ◽  
K. Egashira ◽  
K. Yamaguchi ◽  
...  

The authors developed Whirling Electrical Discharge Machining (Whirling EDM) [1] with the feedback circuit to control gap distance between tool electrode and workpiece. It was found that the probability of discharge was increased by feedback circuit [2]. However, the motor rotational speed control conditions were not optimized and the machining characteristics were not clarified. In this paper, the rotational behavior of tool electrode in Whirling EDM was observed by high-speed camera, and it was considered that the influence of motor rotational speed control conditions on machining characteristics and the relationship between electrical conditions and machining characteristics. As a result, the discharge probability was able to be increased by decreasing range of motor rotational speed in feedback circuit. In addition, the machining characteristics of Whirling EDM which are influenced by electrical conditions were clarified.

2020 ◽  
Vol 996 ◽  
pp. 131-136
Author(s):  
Yao Li ◽  
Cheng Cui ◽  
Bengang Lin ◽  
Li Li

Inconel718 has been widely used in various fields for its good performance, but it is difficult to machine with traditional machining methods. Electrical discharge machining is an alternative competitive process to machine Nickel-based alloys by electrical erosion. In order to improve reduce the electrode loss and improve the machining efficiency, the horizontal ultrasonic vibration of the workpiece and the cryogenic cooling of the tool electrode were applied into the EDM process. Material removal efficiency, surface roughness, surface topography, and microhardness have been characterized.


Author(s):  
Masahiro Yoshida ◽  
Yuu Ishii ◽  
Takemi Ueda

One of the problems faced in the finish electrical discharge machining of cemented carbide is the slow machining speed due to frequent abnormal discharges and concentrated discharge. To resolve this problem, in this study, attempts were made to supply oxygen to oil-type non-flammable dielectric liquid used in finish electrical discharge machining. First, the effects of the form of the oxygen when it is supplied to the dielectric liquid were investigated. As a result, it was found that when oxygen is supplied to the machining gap in the microbubble state, machining is not affected at all. When dissolved in the dielectric liquid and supplied, machining speed was seen to improve. Next, machining experiments were conducted, varying the percentage of 35 wt% hydrogen peroxide water mixed with the dielectric liquid to change the amount of oxygen in the dielectric liquid. As a result, the following were clarified. (1) The machining speed was six times faster than normal dielectric liquid when 15 wt% of oxygen was mixed; (2) at this time, the tool electrode wear had decreased to one-fifth that of normal dielectric liquid; (3) the surface roughness obtained was below Ra 1 µm regardless of the mixed percentage of hydrogen peroxide water; and (4) better machining characteristics were obtained when the workpiece was set as the positive electrode.


2007 ◽  
Vol 329 ◽  
pp. 595-600
Author(s):  
Zhen Long Wang ◽  
Bai Dong Jin ◽  
Guo Hui Cao ◽  
Z.W. Wei ◽  
Wan Sheng Zhao

This paper proposes a new deposition method using micro electrical discharge machining (EDM) to deposit micro spiral structure in gas. First, the basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. Then with an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on the micro spiral structure deposition in air. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval, gravity and working medium, are obtained. As a result, a 19-circle micro spiral structure with 0.19mm in external diameter, 0.1mm in wire diameter and 3.39mm in height is deposited. Measurements show that the deposited material has obvious delaminating structure, the components of which depend on those of the tool electrode material, although Zn in the electrode is oxidized to ZnO. This method establishes the research basis for micro three-dimensional deposition machining.


2010 ◽  
Vol 34 (3) ◽  
pp. 453-460 ◽  
Author(s):  
Dongjue He ◽  
Hiroki Morita ◽  
Xiaoyou Zhang ◽  
Tadahiko Shinshi ◽  
Takayuki Nakagawa ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 303-306
Author(s):  
Xiao You Zhang ◽  
Akio Kifuji ◽  
Dong Jue He

Electrical discharge machining has the capability of machining all conductive materials regardless of hardness, and has the ability to deal with complex shapes. However, the speed and accuracy of conventional EDM are limited by probability and efficiency of the electrical discharges. This paper describes a three degrees of freedom (3-DOF) controlled, wide-bandwidth, high-precision, long-stroke magnetic drive actuator. The actuator can be attached to conventional electrical discharge machines to realize a high-speed and high-accuracy EDM. The actuator primarily consists of thrust and radial magnetic bearings, thrust and radial air bearings and a magnetic coupling mechanism. By using the thrust and radial magnetic bearings, the translational motions of the spindle can be controlled. The magnetic drive actuator possesses a positioning resolution of the order of micrometer, a bandwidth greater than 100Hz and a positioning stroke of 2mm.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1040
Author(s):  
Sergey N. Grigoriev ◽  
Marina A. Volosova ◽  
Anna A. Okunkova ◽  
Sergey V. Fedorov ◽  
Khaled Hamdy ◽  
...  

The material removal mechanism, submicrostructure of surface and subsurface layers, nanotransformations occurred in surface and subsurface layers during electrical discharge machining two structural materials such as anti-corrosion X10CrNiTi18-10 (12kH18N10T) steel of austenite class and 2024 (D16) duralumin in a deionized water medium were researched. The machining was conducted using a brass tool of 0.25 mm in diameter. The measured discharge gap is 45–60 µm for X10CrNiTi18-10 (12kH18N10T) steel and 105–120 µm for 2024 (D16) duralumin. Surface roughness parameters are arithmetic mean deviation (Ra) of 4.61 µm, 10-point height (Rz) of 28.73 µm, maximum peak-to-valley height (Rtm) of 29.50 µm, mean spacing between peaks (Sm) of 18.0 µm for steel; Ra of 5.41 µm, Rz of 35.29 µm, Rtm of 43.17 µm, Sm of 30.0 µm for duralumin. The recast layer with adsorbed components of the wire tool electrode and carbides was observed up to the depth of 4–6 µm for steel and 2.5–4 µm for duralumin. The Levenberg–Marquardt algorithm was used to mathematically interpolate the dependence of the interelectrode gap on the electrical resistance of the material. The observed microstructures provide grounding on the nature of electrical wear and nanomodification of the obtained surfaces.


2015 ◽  
Vol 656-657 ◽  
pp. 335-340 ◽  
Author(s):  
Fang Pin Chuang ◽  
Yan Cherng Lin ◽  
Hsin Min Lee ◽  
Han Ming Chow ◽  
A. Cheng Wang

The environment issue and green machining technique have been induced intensive attention in recent years. It is urgently need to develop a new kind dielectric to meet the requirements for industrial applications. The aim of this study is to develop a novel dielectric using gas media immersed in deionized water for electrical discharge machining (EDM). The developed machining medium for EDM can fulfill the environmentally friendly issue and satisfy the demand of high machining performance. The experiments were conducted by this developed medium to investigate the effects of machining parameters on machining characteristics in terms of material removal rate (MRR) and surface roughness. The developed EDM medium revealed the potential to obtain a stabilizing progress with excellent machining performance and environmentally friendly feature.


2008 ◽  
Vol 381-382 ◽  
pp. 451-454
Author(s):  
Atsutoshi Hirao ◽  
S. Tai ◽  
H. Takezawa ◽  
Naotake Mohri ◽  
Kazuro Kageyama ◽  
...  

In electrical discharge machining (EDM), an electrical discharge occurs between a tool electrode and a work-piece, and removal of materials is carried out by vaporized explosion between the electrode and the work-piece. However, the mechanism of material removal in EDM is not well understood. In order to clarify this issue, the acoustic emission (AE) method has been applied to examine the force of explosion, and the Schlieren visualization method has been applied to observe the explosion. In this study, we investigate the effect of discharge current behavior on the occurrence of the AE waves by means of an optical fiber vibration sensor.


Sign in / Sign up

Export Citation Format

Share Document