Development of a Cutting Tool with Micro Built-In Thermocouples - Characteristic of the Micro Cu/Ni Thermocouples Fabricated by Electroless Plating and Electro Plating

2012 ◽  
Vol 523-524 ◽  
pp. 815-820
Author(s):  
Junichi Harashita ◽  
Yuji Tomoda ◽  
Jun Shinozuka

This study has devised a tool insert with micro built-in thermocouples in order to establish a cutting-temperature measuring method for practical use. This tool insert possesses seven pairs of micro Cu/Ni film thermocouple near the cutting edge on the rake face. In this study, Cu film and Ni film were deposited in the micro grooves corresponding to a circuit pattern of the micro thermocouple by means of electroless plating and electroplating. This paper shows the results of the investigation concerning the electrical properties of the micro Cu/Ni film thermocouples. The influence of the current density in electroplating on the electrical resistivity of the films was examined. The characteristic of the Seebeck property of the micro Cu/Ni film thermocouple was investigated in a temperature difference of up to 600 K with a heating apparatus developed. The Seebeck coefficient of the micro Cu/Ni film thermocouple was smaller by 28 % than that of a Cu/Ni wire thermocouple. The result implies that the degradation in the Seebeck property of the micro Cu/Ni film thermocouple derives from an existence of an impurity between Cu film and Ni film in the hot junction.

Author(s):  
Masahiko Sato ◽  
Masashi Kamoto

Abstract Titanium alloys are widely used as mechanical components, since they have superior properties such as high strength-to-weight ratio. They are regarded as difficult-to-cut materials. Their low thermal conductivity increases the temperature near the cutting edge, which causes excessive tool wear during cutting. Recently, many studies on cryogenic machining have been conducted. Cryogenic machining has emerged as an environmentally friendly alternative to traditional emulsion coolants. In this study, the rake face temperatures of cutting tool in the turning of titanium alloy under dry, soluble coolant, cryogenic carbon dioxide coolant and liquid nitrogen coolant conditions were measured to clarify the effect of coolant on cutting temperature. Turning tests were performed using a precision lathe. Tool insert was made by a translucent alumina. A small hole was drilled into the tool insert. An infrared radiation pyrometer with an optical fiber was used. The optical fiber was inserted into the hole. During chip formation, the infrared rays, radiated from the tool-chip interface and transmitted through the cutting tool, were accepted and transmitted by the optical fiber. The effects of cryogenic coolant on the rake face temperature were investigated. The rake face temperatures under carbon dioxide cooling and liquid nitrogen cooling were approximately 60 °C and 90 °C lower than that in dry cutting, respectively.


Author(s):  
Masahiko Sato ◽  
Naoki Tamura ◽  
Hisataka Tanaka

This paper describes the cyclic temperature variation beneath the rake face of a cutting tool in end milling. A newly developed infrared radiation pyrometer equipped with two optical fibers is used to measure the temperature. A small hole is drilled in the tool insert from the underside to near the rake face, and an optical fiber is inserted in the hole. One of the optical fibers runs through the inside of the machine tool spindle and connects to the other optical fiber at the end of the spindle. Infrared rays radiating from the bottom of the hole in the tool insert during machining are accepted and transmitted to the pyrometer by the two optical fibers. For a theoretical analysis of the temperature in end milling, a cutting tool is modeled as a semi-infinite rectangular corner, and a Green’s function approach is used. Variation in tool-chip contact length in end milling is considered in the analysis. Experimentally, titanium alloy Ti–6Al–4V is machined in up and down milling with a tungsten carbide tool insert at a cutting speed of 214 m/min. In up milling, the temperature beneath the rake face increases gradually during the cutting period and reaches a maximum just after the cutting. In contrast, in down milling, the temperature increases immediately after cutting starts; it reaches a maximum and then begins to decrease during cutting. This suggests that the thermal impact to the cutting tool during heating is larger in down milling than in up milling, whereas that during cooling is larger in up milling than in down milling. Temperature variation is measured at different depths from the rake face. With increasing depth from the rake face, the temperature decreases and a time lag occurs in the temperature history. At 0.6 mm from the major cutting edge, the temperature gradient toward the inner direction of the tool insert is about 300°C/0.5 mm. The calculated and experimental results agree well.


CIRP Annals ◽  
2015 ◽  
Vol 64 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Naohiko Sugita ◽  
Keigo Ishii ◽  
Tatsuo Furusho ◽  
Kanako Harada ◽  
Mamoru Mitsuishi

2005 ◽  
Vol 886 ◽  
Author(s):  
Atsuko Kosuga ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

ABSTRACTPolycrystalline-sintered samples of Tl2GeTe3, Tl4SnTe3, and Tl4PbTe3 were prepared by a solid-state reaction. Their thermoelectric properties were evaluated at temperatures ranging from room temperature to ca. 700 K by using the measured electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ). Despite their poor electrical properties, the dimensionless figure of merit ZT of all the compounds was relatively high, i.e., 0.74 at 673 K for Tl4SnTe3, 0.71 at 673 K for Tl4PbTe3, 0.29 at 473 K for Tl2GeTe3, due to the very low lattice thermal conductivity of the compounds.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2009 ◽  
Vol 26 (10) ◽  
pp. 107301 ◽  
Author(s):  
Wang Hong-Chao ◽  
Wang Chun-Lei ◽  
Zhang Jia-Liang ◽  
Zhao Ming-Lei ◽  
Liu Jian ◽  
...  

2012 ◽  
Vol 500 ◽  
pp. 211-217
Author(s):  
Zhe Li ◽  
Min Li Zheng ◽  
Xian Zhi Chen ◽  
Meng Tong

Through the analysis on damaged tool in sticking failure experiment by cutting austenitic stainless steel (1Cr18Ni9Ti) with scanning electron microscopy (SME), found that there are micro cracks existent on rake face near the tip of the cutting tool, through the research of the emergence, development and distribution direction of the crack, the direct reason for tool breakage is the crack being out of control. Combining the study of cutting tool element density change in cutting zone and grooving wear on rake face, this paper analyzed the cause of the binding between chip and tool and the influence factors of sticking failure during the cutting process.


2013 ◽  
Vol 802 ◽  
pp. 218-222 ◽  
Author(s):  
Wanatchaporn Namhongsa ◽  
Tosawat Seetawan ◽  
Pennapa Muthitamongkol ◽  
Chanchana Thanachayanont

The polycrystalline of sodium cobalt oxide (Na0.5CoO2) was synthesized by solid state reaction method and sintering method. The microstructure was composed of powder size and crystal structure. The Seebeck coefficient and electrical resistivity are measured. We found that the concentration of sodium ions sandwiched between two neighboring CoO2layers played a crucial role in transport properties. The results showed small particle size, single phase and orthorhombic structure. The Seebeck coefficient of Na0.5CoO2increased as the temperature increased. The electrical resistivity was decreased as temperature decreased from the range 300-500 K.


Sign in / Sign up

Export Citation Format

Share Document