Coated Composite Crosstie Mold Structure Design Used for Experiment with Inventor, Moldflow and Ansys

2013 ◽  
Vol 561 ◽  
pp. 196-200
Author(s):  
Yu Guang Gong ◽  
Zhi Wen Zong ◽  
Ying Yu ◽  
Bai Yuan Lv

Coated crosstie products and counter mold components are created in 3-D model using Inventor software, preparing for CAE analysis. By using Moldflow software , to determine products gate location, filling, packing, cooling, push-out processing, as well as the injection process conditions optimization of simulation analysis to find possible defects, modify and optimize the design, determine the best processing parameters and conditions. Binding using Ansys11.0 software to analyze rail sleeper mold cavity deformation, structure stress, get distribution of property of von Mises stress and displacement vector sum, in the mold cavity on the contact surface. By changing the cavity wall thickness, and other factors to improve the force which it is subjected, providing references to structure optimization of injection mold design. It has been proven that in collaborative application of these three softwares, the design of the injection mold is a very efficient and easy.

2014 ◽  
Vol 908 ◽  
pp. 310-314
Author(s):  
Jun Ping Hu ◽  
Hua Dong Zhu ◽  
Ke Jun Li

For decreasing the stress and displacement of pile clamping mechanism of hydraulic static pile drivers in the process of pile driving, optimizing the pile clamping mechanism and improving quality of pile driving, the working principle of pile clamping and pile driving were introduced briefly. The parametric model of pile clamping mechanism was constituted in ANSYS; the main parameters of the model were set. The command-flow was programmed with APDL standing for ANSYS parametric design language. And then the serialization simulation analysis of pile clamping mechanism was achieved; the cloud diagram of Von Mises stress and the maximal Von Mises stress and displacement vector sum of pile clamping mechanism were elicited. The simulation results were analyzed.


2014 ◽  
Vol 1082 ◽  
pp. 344-347
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Hussin Kamarudin ◽  
Mukhzeer Mohamad Shahimin ◽  
...  

High power LEDs are currently being plagued by heat dissipation challenges due to its high power density thus limiting its further potential development and fulfillment. Exercising proper selection of packaging component could improve the life time of high power LED. In this work, the significance of the heat slug geometry on the heat dissipation of high power LED was addressed through simulation analysis. The heat slug geometries were varied in order to compare the heat dissipation of the high power LED. Ansys version 11 was utilized for the simulation. The heat dissipation of the high power LED was evaluated in terms of junction temperature, von Mises stress and thermal resistance. The key results of the analysis showed that a superior surface area is preferred for an enhanced heat dissipation of high power LED


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xia Zhao ◽  
Xiong-Jun He ◽  
Sheng Yan ◽  
Nguyen Phan Anh

The computational and simulation analysis of pull-out fiber reinforced concrete was investigated. The finite element analysis was used to make this modeling and analysis on this reinforced system and three parts (concrete matrix, the placed fiber reinforcement polymers (FRP), and resin layer) were studied. A constant load was directly applied on the free end of placed FRP and the deformation, von Mises stress, displacement, and strain of these three analyzed parts were obtained. Meanwhile, the specimen system of bonding strength and strain was calculated by the method of ABAQUS. The results showed that, with the constant load, the von Mises stress, deformation, and strain appeared in these three parts, and the maximum values in both FRP and resin layer were shown at the free end side, which provides an accurate description of the rupture mode.


Author(s):  
Pankaj Malkani ◽  
Sunil Kumar Rathod ◽  
K. R. Asha ◽  
Tapan Kumar Khura ◽  
H. L. Khuswaha

In this paper Finite element method (FEM) for design and development of self- propelled foliar applicator is presented. Foliar application is a method for feeding nutrients directly to plants for enhancing nutrient use efficiency through foliar applicator. The major components of the foliar applicator were engine (3.5 kW), gearbox (4F+1R), chassis (1.2 x 0.96 m2), sub-frame assembly, spraying diaphragm pump (Model-SFWP1-055-070-31, capacity 20 lm-1 at 4.4 bar), fertilizer storage tank (225 l). The main objective of this FEM simulation analysis is to find out the stress, deformation and strain induced in chassis and sub-frame assembly of foliar applicator for given boundary condition.  A Computer Aided Design of foliar applicator was developed using Creo-parametric 1 software and then analyzed in FEM mode by using Creo simulation1 software. FEM static analysis resulted in maximum von mises stress 200.750MPa and182.638MPa, maximum deformation 2.81 mm and 1.29 mm and max strain 0.001047 and 0.000636 for chassis and sub-frame assembly respectively. Maximum stresses in both didn’t exceed the respective yield points which signified designs, can be used for fabrication.


2013 ◽  
Vol 677 ◽  
pp. 219-224
Author(s):  
Ying Wu ◽  
Xu Zhou

For cutting down the stress and displacement of banded wedge and synchronous V belt drive in the transmission process, promoting the transmission mechanism, and improving quality of the belt drive, the working principle of the transmission mechanism was introduced briefly. The three dimensional solid model of the transmission mechanism constituted in pro/e; the main parameters of the model were set using ANSYS Workbench. And then the serialization simulation analysis of the transmission mechanism was achieved when the tension force is located in the point of the V belt entering meshing with the driven wheel; the cloud diagram of Von Mises stress and the maximal Von Mises stress and total deformation of the transmission mechanism were elicited. The simulation results were analyzed. The simulation results show that maximal total deformation has a minimum value with increasing the tensioning force. Reducing becomingly the tensioning force in ensuring natural belt drive the maximal Von Mises stress reduces effectively. Augmenting the active force the maximal equivalent stress rarely reduces and the maximal total deformation remains unchanged. Adjusting opportunely the location of the tensioning force the total deformation reduces effectively and the maximum equivalent stress changes smaller.


Cerâmica ◽  
2018 ◽  
Vol 64 (369) ◽  
pp. 97-103 ◽  
Author(s):  
C. A. Costa ◽  
A. F. Michels ◽  
M. E. Kipper

Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM) process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3) and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa.


2012 ◽  
Vol 197 ◽  
pp. 174-178 ◽  
Author(s):  
Xin Hua Wang ◽  
Xiu Xia Cao ◽  
Shu Wen Sun ◽  
Yan Gao

The main components of the opposed biconinal cone screw high-pressure seawater hydraulic pump is the rubber bush and metal cone screw, and the interaction of the bush and cone screw is one of the main factors affecting the novel pump performance. The deformation and stress of the bush and cone screw under the initial interference is analyzed by the nonlinear finite element analysis. The analysis shows that: under the effect of the initial interference, large displacement is present to the radial surface of the cone screw, and the displacement of the radial surface mainly affects the displacement vector sum of the cone screw, and the deformation decreases gradually from the middle to the ends of the cone screw, while the cone screw is bending; the deformation in three direction of the bush is close to each other, but the location of the maximum displacement in each direction is different; with the shrink range increasing, the deformation of the cone screw and bush increases, but the deformation of the cone screw is much smaller than that of bush, so the deformation of the bush mainly affects the seal between the cone screw and bush, and the shrink range between the cone screw and bush decreases because of the deformation of the bush. Over the role of the interference force, the maximum von mises stress of the cone screw is an order larger than that of bush, and the maximum von mises stress both increases with the shrink range increasing; although shrink range is different, the location of the maximum von mises about the cone screw and bush is the same.


2012 ◽  
Vol 510 ◽  
pp. 165-169
Author(s):  
Yong Bai Sha ◽  
Xiao Peng Wan ◽  
Xiao Ying Zhao

This paper presents the structure design, the working principle and the relevant calculation of the mechanical clamping claw of the land rigs automatic arranging drill pipe system. Applying the Generative Structural Analysis module of the CATIA, we can get the Von Mises stress image to show the stress distribution. The finite element analysis provides a simple effective method for the design of the structure of the mechanical clamping claw. Through this device the drill pipe can be transferred automatically and circularly from the rat hole to the pipe racking system and from pipe racking system to the mouth of the well.


2014 ◽  
Vol 893 ◽  
pp. 811-814
Author(s):  
Rajendaran Vairavan ◽  
Zaliman Sauli ◽  
Vithyacharan Retnasamy

The vast development of the LED industry has created contemporary set of thermal issues with limits the reliability of the high power LEDs. Thus, this paper reports a simulation analysis done on single chip high power LED package to evalute the effects of heat slug material on the heat dissipation of the LED package. The heat dissipation of two types of heat slug material, aluminum (Al) and copper (Cu) were compared in terms of junction temperature, von Mises stress and thermal resistance of the LED chip at varied input power of 0.1 W and 1W. Results of the analysis showed that the copper heat slug exhibits a better heat dissipation due to its superior thermal conductivity.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaoru Qian ◽  
Peigang Yan ◽  
Wanjin Han

Abstract A designed method, multidisciplinary coupling computation and multiobjective optimization, has been established for the composite cooling structure of heavy gas turbine blade manufactured with a directionally solidified Ni-based superalloy. The method combines the one-dimensional fluid network gas-thermal coupling computation, three-dimensional flow field coupled with solid stress field, and anisotropic stress calculation based on finite deformation crystal slip. The temperature, flow field, Von-Mises stress and maximum resolved shear stress of the blade before and after optimization were analyzed. The results show that the optimized blade has lower maximum blade temperature, a more uniform temperature distribution, a lower flow resistance of the coolant channel at the leading edge than that of the original blade. The maximum Von-Mises stress of the optimized blade increases by 10.05 % more than the original blade. The maximum shear stress on the suction side and the pressure surface of the optimized blade are improved and slightly deteriorated compared with that of the original blade, respectively. The corresponding relationship of the maximum shear stress distribution with the local temperature gradient reveals further space for the improvement of the composite cooling structure. This paper has a particular guiding significance for the cooling structure design of the turbine blade.


Sign in / Sign up

Export Citation Format

Share Document