Multidisciplinary Design Optimization of the Composite Cooling Structure for Nickel-based Alloy Turbine Blade

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaoru Qian ◽  
Peigang Yan ◽  
Wanjin Han

Abstract A designed method, multidisciplinary coupling computation and multiobjective optimization, has been established for the composite cooling structure of heavy gas turbine blade manufactured with a directionally solidified Ni-based superalloy. The method combines the one-dimensional fluid network gas-thermal coupling computation, three-dimensional flow field coupled with solid stress field, and anisotropic stress calculation based on finite deformation crystal slip. The temperature, flow field, Von-Mises stress and maximum resolved shear stress of the blade before and after optimization were analyzed. The results show that the optimized blade has lower maximum blade temperature, a more uniform temperature distribution, a lower flow resistance of the coolant channel at the leading edge than that of the original blade. The maximum Von-Mises stress of the optimized blade increases by 10.05 % more than the original blade. The maximum shear stress on the suction side and the pressure surface of the optimized blade are improved and slightly deteriorated compared with that of the original blade, respectively. The corresponding relationship of the maximum shear stress distribution with the local temperature gradient reveals further space for the improvement of the composite cooling structure. This paper has a particular guiding significance for the cooling structure design of the turbine blade.


Author(s):  
Itzhak Green

This work determines the location of the greatest elastic distress in cylindrical contacts based upon the distortion energy and the maximum shear stress theories. The ratios between the maximum pressure, the von Mises stress, and the maximum shear stress are determined and fitted by empirical formulations for a wide range of Poisson ratios, which represent material compressibility. Some similarities exist between cylindrical and spherical contacts, where for many metallic materials the maximum von Mises or shear stresses emerge beneath the surface. However, if any of the bodies in contact is excessively compressible the maximum von Mises stress appears at the surface. That transitional Poisson ratio is found. The critical force per unit length that causes yielding onset, along with its corresponding interference and half-width contact are derived.



2008 ◽  
Vol 594 ◽  
pp. 51-56
Author(s):  
Jinn Jong Sheu ◽  
Sheng Hao Fang

In this paper, authors proposed an effective quality index of bending operation and a new punch profile design method to prevent defects. The proposed quality index is presented in terms of distance of fracture location with respect to the topmost plane of blank, the maximum von Mises stress, and the maximum shear stress. The Taguchi method with L18 orthogonal array was adopted to evaluate the effects of design parameters and find out the optimum design of punch profile. A new punch feature called “golden finger” was proposed to control the material flow and move the fracture defects out of the trimming line. The results of this study had demonstrated the optimum die design can be achieved with the proposed golden finger feature to obtain a sound product.



Author(s):  
Johanna Ehlers ◽  
Henning Ressing ◽  
Wulf-Christof von Karstedt ◽  
Daniel Rixen ◽  
Mohamed S. Gadala

The turbine blade is one of the most critical components of a steam turbine. The high thermal loads and large centrifugal forces cause extreme stresses on the blade, especially on its root. This paper focuses on improving the double-T root of a turbine blade of the control stage by decreasing the root’s peak equivalent von-Mises stress. An 18% reduction was achieved in the peak stress by changing the convexity of the contact surface between the root and the groove. The equivalent von-Mises stress was determined in a static structural analysis of a three dimensional finite element model (3D FEM-model) using ANSYS Workbench. This numerical model was developed to include one blade and the associated part of the shaft, whereas the complete circle of blades was considered by applying cyclic symmetry. Furthermore, this paper includes a modal analysis comparing the natural frequencies of the initial FEM-model with the frequencies of the optimized one. The results were established by an investigation of the influence of the FEM-model’s parameters, its material properties, thermal effects, and an additional damping wire in the shroud.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yanan Gao ◽  
Yudong Zhang ◽  
Zetian Zhang ◽  
Minghui Li ◽  
Yingfeng Sun ◽  
...  

Gas is associated with coal mining; it commonly exists in the coal seam. It is one of the major dangers during the production because its reaction between the coal masses may induce the gas-coal outburst as well as it being an expositive matter. The gas accident has caused a huge amount of property damage and casualties. Therefore, the primary precaution for coal mining is gas control. At present, drilling and extraction are the main approaches for gas accident prevention. After drilling, the ground pressure will be released; the gas which is in a free state or absorbed in the coal seam will be easy to extract as the migration channel is enhanced. Hence, one of the most concerned problems is the stress redistribution of the coal and rock mass around the borehole. In practical engineering, there are many joints distributed in the coal and rock strata, so it is necessary to investigate the effect of the drilling in the jointed coal and rock mass. In this paper, the boundary element model of the borehole in the jointed coal and rock mass is established to study the influence of joints on the stress and displacement field. The following results can be obtained. The number of joints has a significant effect on the maximum displacement of the coal and rock mass. The maximum displacement increases with the number of the joint. The position of the maximum displacement shifts from the boundary of the borehole to the far field. Meanwhile, it can be found that the displacement may reach a peak value when the joint angle is 30° and if the joint number is less than 4, and the maximum displacement may occur under the joint angle of 45° and if the joints number continuous increases. The von Mises stress has a trend of increasing with the number of joints when the joint angle is less than 30°, while it has a decreasing trend when the joint angle is larger than 30°. The max stress may occur at the joint angle of 15°. The maximum shear stress occurs mostly in the No. 4 joint and the No.7 joint. When the joint angle is 30°, the maximum shear stress occurs in the No. 3 joint and the No. 4 joint. The overlap of the position of the maximum von Mises stress or the maximum displacement with different joint angles or different numbers of joint leads to a reexploration of such positions. The position of the maximum von Mises stress and the maximum displacement o is relatively steady, which locates symmetrically around the borehole. The line between the points that behaves as the maximum von stress is approximately perpendicular to the joint direction.



2019 ◽  
Vol 35 (6) ◽  
pp. 809-828
Author(s):  
Y. Lian ◽  
Z. Xu ◽  
H. Pei ◽  
C. Liang ◽  
Y. Zhang ◽  
...  

ABSTRACTThe crystal plastic theory was used to examine the effect of film-cooling hole arrangements on mechanical properties of cooled turbine blade. The finite element method was used to analyze the maximum von Mises stress and resolved shear stress of an octahedral slip system considering the number of rows, diameter, spacing, and tangential-to-longitudinal hole spacing (h/l) ratio. The different arrangements were found to have a significant influence on the maximum von Mises stress and resolved shear stress. For the triangular arrangement, the von Mises stress and resolved shear stress were highest with double rows, followed by a single row and then triple rows. For the quadrilateral arrangement, the stresses were highest with double rows, followed by triple rows and then a single row. Increasing the spacing or decreasing the diameter reduced the maximum von Mises stress and weakened the multi-hole interference effect. Both the maximum von Mises stress and resolved shear stress decreased with the h/l ratio.



Author(s):  
Dirk T. Vogel

The three dimensional flow around an extensively investigated slot film cooled turbine blade is numerically investigated using a multi block finite volume Navier-Stokes solver. Three blowing rates are simulated including the whole geometry of the interior blade cooling system and slots. Due to the ejection at the blade leading edge and the geometry of the cooling slots a very complex turbulent three dimensional flow field is generated. The size and shape of the flow separation zones depending on the film cooling ejection is systematically investigated using several two-equation models, e.g. the standard and low Reynolds k–ε-Model of Lam and Bremhorst (1981) r[4], the extension of Kato/Launder (1993) [3] and the k–ω-Model of Wilcox (1991) [10], whereas the results of the standard k–ε-Model are presented. Experimental data obtained by Laser velocimetry, oil-flow pictures and pressure probes are used to understand the complex flow field and to validate the Navier-Stokes solver. The multi-block code applies a traditional Jameson type solver and an implicit solver using several spatial discretization schemes for the convective fluxes. The two-equation models are solved using an RED-BLACK implicit technique with first order spatial upwind discretization to guarantee stability.



1999 ◽  
Vol 121 (3) ◽  
pp. 191-195 ◽  
Author(s):  
F. Yang ◽  
I. Kao

In wiresaw manufacturing processes, such as those in slicing silicon wafers for electronics fabrication, abrasive slurry is carried by high-speed wire (5 to 15 m/s), which exerts normal load to the surface via hydrodynamic effects and bow of taut wire. As a result, the abrasives carried by slurry are constrained to indent onto and roll over the surface of substrate. In this paper, the axisymmetric indentation problem in the free abrasive machining (FAM) is studied by modeling a rigid abrasive of different shapes pushing onto an elastic half space. Based on the harmonic property of dilatation, the closed-form solution of stress distribution inside the cutting material for three different indentation processes in common FAM process are presented: cylindrical and conical abrasives as well as uniform pressure distribution. Along the symmetrical axis, von-Mises stress is two times larger than that of local maximum shear stress for all three indentation conditions. The von-Mises stress is infinity at the contact point for sharp pointed indentation, a location of crack initiation and nucleation. For indentation by abrasive of flat surface, which also can be provided by the localized effects due to the hydrodynamic pressure acting on the surface, both the von-Mises and local maximum shear stress reach maximum underneath the contact zone.



Author(s):  
Nurullah Türker ◽  
Hümeyra Tercanlı Alkış ◽  
Steven J Sadowsky ◽  
Ulviye Şebnem Büyükkaplan

An ideal occlusal scheme plays an important role in a good prognosis of All-on-Four applications, as it does for other implant therapies, due to the potential impact of occlusal loads on implant prosthetic components. The aim of the present three-dimensional (3D) finite element analysis (FEA) study was to investigate the stresses on abutments, screws and prostheses that are generated by occlusal loads via different occlusal schemes in the All-on-Four concept. Three-dimensional models of the maxilla, mandible, implants, implant substructures and prostheses were designed according to the All-on-Four concept. Forces were applied from the occlusal contact points formed in maximum intercuspation and eccentric movements in canine guidance occlusion (CGO), group function occlusion (GFO) and lingualized occlusion (LO). The von Mises stress values for abutment and screws and deformation values for prostheses were obtained and results were evaluated comparatively. It was observed that the stresses on screws and abutments were more evenly distributed in GFO. Maximum deformation values for prosthesis were observed in the CFO model for lateral movement both in the maxilla and mandible. Within the limits of the present study, GFO may be suggested to reduce stresses on screws, abutments and prostheses in the All-on-Four concept.



Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.



Sign in / Sign up

Export Citation Format

Share Document