Carbon Powder as Additive in Near-Net-Shaping of Mechanical Components through Warm Forming Route

2013 ◽  
Vol 594-595 ◽  
pp. 948-952
Author(s):  
Mujibur M. Rahman ◽  
N.A.A.A. Kadir

This paper presents the study of carbon powder as additive in near-net-shaping of mechanical components through warm forming route. Three design parameters, i.e., carbon content (wt %), forming temperature, and sintering schedule were investigated. Iron powder ASC 100.29 was mechanically mixed with different wt% of carbon and copper powder for 30 minutes to prepare the feedstock. Green compacts were then formed through uni-axial die compaction process at 30°C and 180oC. The defect-free green compacts were then sintered at 1000oC in an argon gas fired furnace at a heating/cooling rate of 5oC/minute for 30, 60, and 90 minutes, respectively. The green samples as well the sintered products were characterized through relative density measurement, radial shrinkage, and microstructure evaluation. The results revealed that excessive carbon content contributed adverse effect to the final quality of the products.

2013 ◽  
Vol 785-786 ◽  
pp. 12-15 ◽  
Author(s):  
Tie Jun Zhang

It is very important to produce 55Q steel with the exact carbon content. Low and inconsistent carbon elemental recovery problems are often encountered when adding pig iron, or carbon powder into the baths of light rail steel. This is the case because carbon presents some of the following characteristics: lower density much more than the molten steel, low solubility in the liquid steel, high affinity due to oxygen. These circumstances lead to difficulties or risks, such as: poor or erratic recovery of alloying carbon element, violent and dangerous splashing, adverse environmental impact. To counter these problems existed in conventional method, carbon cored wire was prepared and wire injection process introduced in this work, and the effects of parameters such as feeding rate, etc on carbon recovery are investigated. The results show when using the carbon wire injection method, stable carbon addition is obtained, that is, the mean recovery of the carbon absorption is 90%, and what's more, the carbon content is under control accurately and environment improved.


Author(s):  
Valentina Medri ◽  
Diletta Sciti ◽  
Elena Landi

In spite of the difficult sinterability of Zr and Hf borides and carbides, recent results highlight that these ceramics can be produced with full density, fine microstructure, and controlled mechanical and thermal properties, through different procedures: pressureless sintering and hot pressing with proper sintering aids, reactive synthesis/sintering procedures starting from precursors, and field assisted technologies like spark plasma sintering. More recently, the use of near net shaping techniques and the development of UHTC porous components open the way to further and innovative applications, where the performances, fixed the material, are linked to 2D or 3D architectures and the high ratio of specific surface area to volume of the component and to the features of the porosity itself. Structural lightweight parts, insulator panels, filters, radiant burners, and solar absorbers are some of the possible applications.


2014 ◽  
Vol 496-500 ◽  
pp. 279-283 ◽  
Author(s):  
Peng Ju Xue ◽  
Yan Wu ◽  
Qing Song Wei ◽  
Yu Sheng Shi

Near-net-shaping hot isostatic pressing (NNS-HIP) method was used for once-forming complex monolithic Ti6Al4V alloy bladed disks manufacturing. The complex monolithic bladed disks were formed successfully in a near-net-shape manner using the proposed HIP mold scheme in this study. The results showed that there were fine and homogeneous strip α+β phases and no obvious pores or cracks were detected. A "layered" phenomenon was observed in as-built part microstructure. The tensile strength value of specimens from the NNS-HIP bladed disks in the same furnace reached 900MPa, which was higher than the values of parts manufactured using casting and forging processes. The fracture morphology analysis showed that the sample had a ductile fracture. This study provides a reference to the NNS-HIP for the bladed disk parts manufacturing.


2014 ◽  
Vol 217-218 ◽  
pp. 347-354 ◽  
Author(s):  
Jokin Lozares ◽  
Zigor Azpilgain ◽  
Iñaki Hurtado ◽  
Iñigo Loizaga

Due to the current trend in prices of raw material and their sources, near net shaping of mechanical components will become a key factor for the companies to get the desired competitiveness. Semisolid metal (SSM) forming is one of those near net shape forming techniques revealing a high potential to reduce material as well as energy consumption compared to conventional process technologies. Thus, the aim of this research work is to demonstrate the above by manufacturing a steel commercial automotive spindle by thixo-lateral forming from three different steel grades. The starting material, the microstructure and mechanical properties are analysed along the article. Material savings of 20% have been reported together with a substantial decrease of the forming forces. In addition, great mechanical properties have been achieved which brings the process closer to the desired final industrial application.


2018 ◽  
Vol 101 (7) ◽  
pp. 2770-2785 ◽  
Author(s):  
Silvia Leo ◽  
Laura Jukes ◽  
Samuel Pinches ◽  
Carolina Tallon ◽  
George V. Franks

Author(s):  
Ting Fai Kong ◽  
Luen Chow Chan ◽  
Tai Chiu Lee

Warm forming is a manufacturing process in which a workpiece is formed into a desired shape at a temperature range between room temperature and material recrystallization temperature. Flow stress is expressed as a function of the strain, strain rate, and temperature. Based on such information, engineers can predict deformation behavior of material in the process. The majority of existing studies on flow stress mainly focus on the deformation and microstructure of alloys at temperature higher than their recrystallization temperatures or at room temperature. Not much works have been presented on flow stress at warm-forming temperatures. This study aimed to determine the flow stress of stainless steel AISI 316L and titanium TA2 using specially modified equipment. Comparing with the conventional method, the equipment developed for uniaxial compression tests has be verified to be an economical and feasible solution to accurately obtain flow stress data at warm-forming temperatures. With average strain rates of 0.01, 0.1, and 1 /s, the stainless steel was tested at degree 600, 650, 700, 750, and 800 °C and the titanium was tested at 500, 550, 600, 650, and 700 °C. Both materials softened at increasing temperatures. The overall flow stress of stainless steel was approximately 40 % more sensitive to the temperature compared to that of titanium. In order to increase the efficiency of forming process, it was suggested that the stainless steel should be formed at a higher warm-forming temperature, i.e. 800 °C. These findings are a practical reference that enables the industry to evaluate various process conditions in warm-forming without going through expensive and time consuming tests.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 198 ◽  
Author(s):  
Jokin Lozares ◽  
Gorka Plata ◽  
Iñaki Hurtado ◽  
Andrea Sánchez ◽  
Iñigo Loizaga

Near solidus forming (NSF) of steels is a novel process under the umbrella of semi-solid forming technologies midway between classical hot forging and semi-solid technologies. This article presents the work done at Mondragon Unibertsitatea to develop this technology and demonstrates the great potential of the NSF process. The study proves the capability of the process to reduce raw material consumption by 20%, reduce forming loads from 2100 t to 300 t, and reduce forming steps from three to one, to obtain as-forged mechanical properties, as well as the excellent repeatability of the process. The work demonstrates that manufacturing commercial steel components in a single step using several off-the-shelf alloys is possible thanks to the flowing pattern of the material, which enables near-net shaping. In the first part of the article, a general overview of the semi-automated near solidus forming cell, together with a description of the NSF manufacturing trials, is provided, followed by the presentation and discussion of the results for the selected steel alloys.


2013 ◽  
Vol 75 ◽  
pp. 94-109 ◽  
Author(s):  
Hyuk Jong Bong ◽  
Frédéric Barlat ◽  
Deok Chan Ahn ◽  
Heon-Young Kim ◽  
Myoung-Gyu Lee

2001 ◽  
Vol 3 (4) ◽  
pp. 233-235
Author(s):  
A. Salomoni ◽  
L. Esposito ◽  
A. Tucci ◽  
I. Stamenkovic

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
H. Laurent ◽  
J. Coër ◽  
R. Grèze ◽  
P. Y. Manach ◽  
A. Andrade-Campos ◽  
...  

This study deals with the mechanical behaviour and material modelling of an AA5754-O alloy at elevated temperature. Experimental shear tests were performed from room temperature up to 200°C, and the material behaviour has been identified with both shear and tensile tests, as a function of temperature. To analyse the influence of temperature during forming over springback, a split-ring test is used. Experimental results are obtained and compared to numerical simulations performed with the finite element in-house code DD3IMP. The numerical process of ring splitting is performed with the in-house code DD3TRIM. The main observed data are force-displacement curves of the punch during forming, cup thickness at the end of forming, and ring gap after splitting. It is shown that all these parameters are strongly dependent on the forming temperature. A correlation is obtained between experimental data and numerical simulation for the evolution of punch force and opening after springback as a function of temperature. The distribution of the tangential stress in the cup wall is the main factor influencing the springback mechanism in warm forming condition.


Sign in / Sign up

Export Citation Format

Share Document