Resins Materials as Alternative Insert for the Fabrication of Micro Structured Surfaces by Micro Injection Moulding

2014 ◽  
Vol 611-612 ◽  
pp. 909-914 ◽  
Author(s):  
Marco Sorgato ◽  
Gioia della Giustina ◽  
Erika Zanchetta ◽  
Giovanna Brusatin ◽  
Giovanni Lucchetta

Micro injection moulding is a key technology for mass-production of micro structured surfaces, such as optical and microfluidic devices. The manufacturing of a microstructured master mould with traditional technologies poses challenges about durability, accuracy and high - volume production. This paper introduces a new approach to realize micro mould inserts in a fast and economical way. Suitable engineered materials as alternative inserts to the metallic one are proposed exploiting the following new strategy: a thermosetting epoxy resin from renewable sources was synthesized and used to realize the mould insert via casting. The initial low viscosity of the liquid epoxy resin precursors allows the achievement of a high fidelity replica of different micro structures and provides an inexpensive and convenient route for rapidly duplicate master mould. A staggered harringbone (SHM) micro-mixer geometry was replicated and the epoxy based resin insert withstood 900 moulding cycles showing good features replication and durability.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3910 ◽  
Author(s):  
Kashouty ◽  
Rennie ◽  
Ghazy

Rapid Tooling processes are developing and proving to be a reliable method to compete with subtractive techniques for tool making. This paper investigates large volume production of components produced from Selective Laser Melting (SLM) fabricated injection moulding tool inserts. To date, other researchers have focused primarily on investigating the use of additive manufacturing technology for injection moulding for low-volume component production rather than high volume production. In this study, SLM technology has been used to fabricate four Stainless Steel 316L tool inserts of a similar geometry for an after-market automotive spare part. The SLM tool inserts have been evaluated to analyse the maximum number of successful injections and quality of performance. Microstructure inspection and chemical composition analysis have been investigated. Performance tests were conducted for the four tool inserts before and after injection moulding in the context of hardness testing and dimensional accuracy. For the first reported time, 150,000 injected products were successfully produced from the four SLM tool inserts. Tool inserts performance was monitored under actual operating conditions considering high-level demands. In the scope of this research, SLM proved to be a dependable manufacturing technique for most part geometries and an effective alternative to subtractive manufacturing for high-volume injection moulding tools for the aftermarket automotive sector.


2015 ◽  
Vol 76 (6) ◽  
Author(s):  
Najiy Rizal Suriani Rizal ◽  
Aidah Jumahat ◽  
Ummu Raihanah Hashim ◽  
Mohd Sobri Omar

Injection molding is one of the most popular manufacturing processes for producing good finishing plastic products with low cost and high volume production, especially for the production of plastic bottles. In order to produce high quality plastic bottle with specific size, the injection moulding mould need to be properly designed. This study is aimed to design injection moulding mould for producing three different sizes of Polyethylene Terephthalate (PET) parison. The actual dimensions of a commercial bottle preform of parisan of 25g weight were measured. PET was used as thermoplastic material because it has good strength and light weight properties. The designing process involved two primary components; (1) Female section consists of cavity plate as the main component and (2) male section consists of core plate as the main component. The effect of parisan size on the mould design was evaluated. Three different designs of female and male sections were constructed using CATIA software based on 15g, 20g and 30g parisan weight. The designs were also compared to the existing mould system of 25g PET parisan. It was shown that the design of insert cavity of female section and core cavity of male section were highly influenced by the size of the preform.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jort Hammer ◽  
Hidenori Matsukami ◽  
Satoshi Endo

AbstractChlorinated Paraffins (CPs) are high volume production chemicals and have been found in various organisms including humans and in environmental samples from remote regions. It is thus of great importance to understand the physical–chemical properties of CPs. In this study, gas chromatographic (GC) retention indexes (RIs) of 25 CP congeners were measured on various polar and nonpolar columns to investigate the relationships between the molecular structure and the partition properties. Retention measurements show that analytical standards of individual CPs often contain several stereoisomers. RI values show that chlorination pattern have a large influence on the polarity of CPs. Single Cl substitutions (–CHCl–, –CH2Cl) generally increase polarity of CPs. However, many consecutive –CHCl– units (e.g., 1,2,3,4,5,6-C11Cl6) increase polarity less than expected from the total number of –CHCl– units. Polyparameter linear free energy relationship descriptors show that polarity difference between CP congeners can be explained by the H-bond donating properties of CPs. RI values of CP congeners were predicted using the quantum chemically based prediction tool COSMOthermX. Predicted RI values correlate well with the experimental data (R2, 0.975–0.995), indicating that COSMOthermX can be used to accurately predict the retention of CP congeners on GC columns.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2205
Author(s):  
Qian Li ◽  
Yujie Li ◽  
Yifan Chen ◽  
Qiang Wu ◽  
Siqun Wang

A novel liquid phosphorous-containing flame retardant anhydride (LPFA) with low viscosity was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and methyl tetrahydrophthalic anhydride (MeTHPA) and further cured with bisphenol-A epoxy resin E-51 for the preparation of the flame retardant epoxy resins. Both Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) measurements revealed the successful incorporation of DOPO on the molecular chains of MeTHPA through chemical reaction. The oxygen index analysis showed that the LPFA-cured epoxy resin exhibited excellent flame retardant performance, and the corresponding limiting oxygen index (LOI) value could reach 31.2%. The UL-94V-0 rating was achieved for the flame retardant epoxy resin with the phosphorus content of 2.7%. With the addition of LPFA, the impact strength of the cured epoxy resins remained almost unchanged, but the flexural strength gradually increased. Meanwhile, all the epoxy resins showed good thermal stability. The glass transition temperature (Tg) and thermal decomposition temperature (Td) of epoxy resin cured by LPFA decreased slightly compared with that of MeTHPA-cured epoxy resin. Based on such excellent flame retardancy, low viscosity at room temperature and ease of use, LPFA showed potential as an appropriate curing agent in the field of electrical insulation materials.


1986 ◽  
Vol 67 ◽  
Author(s):  
Chris R. Ito ◽  
M. Feng ◽  
V. K. Eu ◽  
H. B. Kim

ABSTRACTA high-volume epitaxial reactor has been used to investigate the feasibility for the production growth of GaAs on silicon substrates. The reactor is a customized system which has a maximum capacity of 39 three-inch diameter wafers and can accommodate substrates as large as eight inches in diameter. The MOCVD material growth technique was used to grow GaAs directly on p-type, (100) silicon substrates, three and five inches in diameter. The GaAs surfaces were textured with antiphase boundaries. Double-cyrstal rocking curve measurements showed single-cyrstal GaAs with an average FWHMof 520 arc seconds measured at four points over the wafer surface. Within-wafer thickness uniformity was ± 4% with a wafer-to-wafer uniformity of ± 2%. Photoluminescence spectra showed Tour peaks at 1.500, 1.483, 1.464, and 1.440 ev. Schottky diodes were fabricated on the GaAs on silicon material.


Sign in / Sign up

Export Citation Format

Share Document