Laser Welding of High-Strength CP Steels: Dissimilar Welds

2015 ◽  
Vol 647 ◽  
pp. 141-146 ◽  
Author(s):  
Jan Kašpar ◽  
Stanislav Němeček

The paper explores laser welding of high-strength CP-W® 800 steel and forged steel. Dissimilar welds were produced with different welding parameters. Two welding beam diameters were used. The microstructure and mechanical properties of the resulting welds were examined. Metallographic sections were prepared and microhardness and tension tests were carried out. Fatigue tests were conducted on the weld specimens to map the effects of welding parameters on the fatigue behaviour of the dissimilar weld between the CP steel and the forged steel. Greater amount of heat input impairs the strength of the joint but improves its resistance to initiation of fatigue cracks.

Author(s):  
Patricio Gustavo Riofrío ◽  
Carlos Alexandre Capela ◽  
José AM Ferreira ◽  
Amilcar Ramalho

High strength low alloy steels subjected to the thermomechanical control process present excellent strength–toughness combination, high strength/weight ratio, and weldability. Therefore, they are widely used in structural components, such as pressure vessels, oil/gas transportation pipes, lifting equipment, vehicles, shipbuilding and offshore industries, and in the automotive industry where low thickness (0.8–3 mm thickness) is of great importance. Usually, these steels are welded by conventional gas metal arc welding, which creates wide heat-affected zones, large residual stresses, and distortion in the welded parts. Laser welding is nowadays an alternative process to weld high strength low alloy steel parts due to its advantages. The aim of this work is to understand the effect of process parameters on defects, weld bead geometry, microstructure, and mechanical properties, namely hardness and tensile strength. We identify the main laser welding parameters and their influence on the weld bead geometry and defects, for a 3 mm thick high strength low alloy steel welded under a maximum power of 2 kW. A cross section of the weld seam was optimized achieving a good geometry without porosity. The threshold value of the heat input to achieve complete penetration was determined for different focus diameters. The microstructure, size, and hardness of the heat-affected zone and of the fusion zone are strongly influenced by the heat input. The values of the tensile strength achieved in butt welds were close to the base metal by an appropriate selection of the laser welding parameters and the heat input.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2019 ◽  
Vol 111 ◽  
pp. 387-394 ◽  
Author(s):  
Qianqian Guan ◽  
Jiangqi Long ◽  
Ping Yu ◽  
Shunchao Jiang ◽  
Wenhao Huang ◽  
...  

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Misbahu A Hayatu ◽  
Emmanuel T Dauda ◽  
Ola Aponbiede ◽  
Kamilu A Bello ◽  
Umma Abdullahi

There is a growing interest for novel materials of dissimilar metals due to higher requirements needed for some critical engineering applications. In this research, different dissimilar weld joints of high strength low alloy (HSLA) and 316 austenitic stainless steel grades were successfully produced using shielded metal arc welding (SMAW) process with 316L-16 and E7018 electrodes. Five variations of welding currents were employed within the specified range of each electrode. Other welding parameters such as heat inputs, welding speeds, weld sizes, arc voltages and time of welding were also varied. Specimens for different weld joint samples were subjected to microstructural studies using optical and scanning electron microscopes. The impact toughness test was also conducted on the samples using Izod impact testing machine. The analysis of the weld microstructures indicated the presence of type A and AF solidification patterns of austenitic stainless steels. The results further showed that the weld joints consolidated with E7018 electrode presented comparatively superior impact energy to the weldments fabricated by 316L-16 electrode. The optimum impact energy of E7018-weld joints (51J) was attained at higher welding heat inputs while that of 316L-16-weld joints (35J) was achieved at lower welding heat inputs, which are necessary requirements for the two electrodes used in the experiment. Hence, the dissimilar weld joints investigated could meet requirement for engineering application in offshore and other critical environments.Keywords—Dissimilar metal weld, heat input, impact toughness, microstructures


2016 ◽  
Vol 258 ◽  
pp. 501-505
Author(s):  
Alice Chlupová ◽  
Milan Heczko ◽  
Karel Obrtlík ◽  
Přemysl Beran ◽  
Tomáš Kruml

Two γ-based TiAl alloys with 7 at.% of Nb, alloyed with 2 at.% Mo and 0.5 at.% C, were studied. A heat treatment leading to very fine lamellar microstructure was applied on both alloys. Microstructure after the heat treatment was described and mechanical properties including fatigue behaviour were measured. The as-received material alloyed with C possesses high strength and very limited ductility, especially at RT. After application of selected heat treatment it becomes even more brittle; therefore, this process could be considered as not appropriate for this alloy. On the contrary, in the case of Mo alloyed material, both strength and ductility are improved by the heat treatment at RT and usual working temperature (~750 °C). Presence of the β phase is responsible for this effect. The selected heat treatment thus can be an alternative for this alloy to other thermomechanical treatments as high temperature forging.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 685
Author(s):  
Xiaoqing Jiang ◽  
Shujun Chen ◽  
Jinlong Gong ◽  
Zhenyang Lu

The present study aims to investigate the effect of microstructure and texture on mechanical properties of resistance spot welding of high strength steel 22MnB5 and 5A06 aluminium alloy as a function of welding parameters. The pseudo-nugget zones (NZs) at the steel side have undergone full recrystallisation with a fine-grained ferrite structure containing a small amount of retained austenite and a high hardness of approximately 500 HV, which is a 35% increase in hardness compared to the base material (BM) with fine lath martensitic structure. The NZs at the Al side contain both a recrystallisation texture and shear texture. Higher tensile shear strength with increasing weld time could be linked to the random texture at the Al side. The highest tensile shear strength was achieved at an intermetallic layer thickness of 4 mm.


Author(s):  
Behrouz Bagheri ◽  
Mahmoud Abbasi ◽  
Reza Hamzeloo

A tailor welded blank (TWB) includes two or more blanks joined together in order to make a single blank. Different welding methods are used to join blanks with different characteristics and form TWBs. In this study, a comparison is made among the effects of three different welding methods namely CO2 laser welding, friction stir welding (FSW), and friction stir vibration welding (FSVW) on mechanical and formability properties of developed TWBs. AA6061 alloy sheets with different thicknesses (1.2 and 0.8 mm) are joined to get TWBs. The forming limit diagram (FLD) and limiting dome height (LDH) are applied to assess the formability. The Taguchi method is applied to find the optimum values of welding parameters. It is concluded that TWBs made by FSVW have higher mechanical properties and formability compared to TWBs made by FSW and CO2 laser welding. The results also indicate that FLD for TWBs made by FSW is higher than FLD for TWBs made by CO2 laser welding and FLD0, for TWBs made by FSVW, increases as vibration frequency increases.


Sign in / Sign up

Export Citation Format

Share Document