Ductility of Ultra-High Performance Concrete and its Correlation with Tensile Strength Increase

2015 ◽  
Vol 665 ◽  
pp. 21-24
Author(s):  
B.I. Bae ◽  
Hyun Ki Choi ◽  
Chang Sik Choi

In this study, ductility of members with ultra-high performance concrete was investigated using moment-curvature analysis for the verification of safety under large deformation of ultra-high performance concrete structural members. For the analysis of members with ultra-high performance concrete, mathematical stress-strain model was selected among the results conducted by other researchers on the compressive and tensile behavior of high strength concrete and fiber reinforced concrete. According to the investigation on ductility of members with ultra-high performance concrete, decrease of ductility was observed with increase of tensile strength of concrete under the same reinforcement ratio. Members with 2~3% of reinforcement ratio, which usually be used in the field engineering, show the decrease of ductility with increase of fiber volume fraction. As a results of parametric study, limitation of maximum reinforcement ratio ( or limitation of net tensile strain ) suggested by current design code is not safe when using ultra-high performance concrete.

Fibers ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 67 ◽  
Author(s):  
Manish Roy ◽  
Corey Hollmann ◽  
Kay Wille

This paper studied the influence of fiber volume fraction ( V f ), fiber orientation, and type of reinforcement bar (rebar) on the uniaxial tensile behavior of rebar-reinforced strain-hardening ultra-high performance concrete (UHPC). It was observed that the tensile strength increased with the increase in V f . When V f was kept constant at 1%, rebar-reinforced UHPC with fibers aligned with the load direction registered the highest strength and that with fibers oriented perpendicular to the load direction recorded the lowest strength. The strength of the composite with random fibers laid in between. Moreover, the strength, as well as the ductility, increased when the normal strength grade 60 rebars embedded in UHPC were replaced with high strength grade 100 rebars with all other conditions remaining unchanged. In addition, this paper discusses the potential of sudden failure of rebar-reinforced strain hardening UHPC and it is suggested that the composite attains a minimum strain of 1% at the peak stress to enable the members to have sufficient ductility.


Author(s):  
Faiq M. Al-Zwainy ◽  
Hussam k. Risan ◽  
Rana I. K. Zaki

The purpose of this study was to conduct a meta-analysis that shows the influence of fiber on ultimate compressive strength and tensile strength of ultra-high performance concrete. The internet scholarly search engines and ScienceDirect article references were used to illustrate the papers concerning the experimental investigations of mechanical properties of ultra-high strength concrete with and without fiber with clearly, completely and comparative raw data. The normal concrete test results were dismissed from this search. Seven trials were identified based on the adopted inclusion and exclusion criteria above. The meta-analysis based on standardized mean difference was carried out on the basis of a fixed-effects model for the major outcomes of the ultimate compressive and tensile properties of ultra-high performance concrete. A total of 888 test specimens were enrolled in these seven trials. The combined analysis yielded a sign of a significant improvement in ultimate compressive strength and tensile strength of ultra-high strength concrete with fiber addition of 2% by concrete volume. The summary effect size of ultimate compressive strength was 2.34 while a more improvement in term of tensile strength with effect size of 2.64. By addition fiber of 2% provides a significant benefit in mechanical properties of ultra-high performance concrete.


2013 ◽  
Vol 357-360 ◽  
pp. 1110-1114
Author(s):  
Dong Tao Xia ◽  
Xiang Kun Liu ◽  
Bo Ru Zhou

A set of new hybrid fiber reinforced high-performance concrete was developed and studied by experiment. The fibers incorporated the concrete are the collection of the steel fiber, modified polypropylene fiber and polypropylene with total fiber content not more than 1%. And the compressive test, splitting tensile test and the flexural toughness test were performed on eight groups of specimens. Based on the load-deflection and load-CMOD curves and the equivalent flexural tensile strength, the effect of fiber volume fraction and hybrid mode upon concrete's mechanical properties and post-peak behavior were investigated. The test results show that the mixing of the three different fibers can increase concrete's splitting tensile strength and flexural toughness more effectively with no significantly effect on compressive strength. The mixture of the three different fibers exist the optimization problem. Based on the results of the analysis, the compatible proportion of the three fibers is 0.7% steel fiber, 0.19% modified polypropylene fiber and 0.11% polypropylene fiber.


2013 ◽  
Vol 438-439 ◽  
pp. 249-252 ◽  
Author(s):  
Zhe Jin ◽  
Cheng Ya Wang

An experimental study has been conducted to investigate the effect of the fraction of PVA fiber on the mechanical properties of high-performance concrete. The mechanical properties include compressive strength, splitting tensile strength and compressive elastic modulus. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of PVA fiber acting on these mechanical properties has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and splitting tensile strength when the fiber volume fraction is below 0.08%, and the compressive elastic modulus of high-performance concrete decreases gradually with the increasing volume fraction of PVA fiber with appropriate content.


2020 ◽  
Vol 10 (14) ◽  
pp. 4964 ◽  
Author(s):  
Sanghee Kim ◽  
Thomas H.-K. Kang

Predicting the damage to a concrete panel under impact loading is difficult due to the complexity of the impact mechanism of concrete. Based on the experimental results obtained by various researchers, the energies involved in the impact mechanism are classified into seven categories: Kinetic energy, deformed energy of a projectile, elastic penetration resistance energy of the panel, overall deformed energy of the panel, spalling-resistant energy, tunneling-resistant energy, and scabbing-resistant energy. Using these impact mechanisms and the energy conservation law, a new energy-based penetration depth formula is proposed to predict the penetration depth. This is validated using 402 impact test results, which include those with high-strength concrete, ultra-high-performance concrete (UHPC), or steel fiber-reinforced concrete, those under very high-velocity impact, and those with a very low ratio of target panel thickness to projectile diameter. It is found that the new impact formula predicts the penetration depth quite well.


2021 ◽  
Vol 11 (7) ◽  
pp. 2951
Author(s):  
Baek-Il Bae ◽  
Moon-Sung Lee ◽  
Chang-Sik Choi ◽  
Hyung-Suk Jung ◽  
Hyun-Ki Choi

Evaluation of the ultimate strength for the UHPFRC (ultra-high-performance fiber-reinforced concrete) flexural members was conducted. In this study, an experimental program about UHPFRC beams was conducted with the effect of fiber volume fraction, shear span to depth ratio, and compressive strength of matrix as the main variables. Among them, it was found that fiber volume fraction was the variable that had the greatest influence on the ultimate strength. The inclusion of 2% volume fraction steel fiber increases the shear and flexural strength of UHPFRC beams significantly. In particular, steel fiber inclusion changed the mode of failure of beams from diagonal shear failure into flexural failure. For the classification of failure patterns, the ultimate flexural strength and shear strength of UHPFRC members were evaluated using the current design code and UHPC guidelines. Flexural ultimate strength was affected by the size and shape of the stress block and consideration of the matrix’s tensile strength. For the accurate shear strength prediction of UHPFRC beams, the tensile strength of the high strength matrix and the effect of steel fiber should be considered.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3254 ◽  
Author(s):  
Li ◽  
Feng ◽  
Ke ◽  
Pan ◽  
Nie

In order to study the direct shear properties of ultra-high performance concrete (UHPC) structures, 15 Z-shaped monolithic placement specimens (MPSs) and 12 Z-shaped waterjet treated specimens (WJTSs) were tested to study the shear behavior and failure modes. The effects of steel fiber shape, steel fiber volume fraction and interface treatment on the direct shear properties of UHPC were investigated. The test results demonstrate that the MPSs were reinforced with steel fibers and underwent ductile failure. The ultimate load of the MPS is about 166.9% of the initial cracking load. However, the WJTSs failed in a typical brittle mode. Increasing the fiber volume fraction significantly improves the shear strength, which can reach 24.72 MPa. The steel fiber type has little effect on the shear strength and ductility, while increasing the length of steel fibers improves its ductility and slightly reduces the shear strength. The direct shear strength of the WJTSs made from 16 mm hooked-type steel fibers can reach 9.15 MPa, which is 2.47 times the direct shear strength of the specimens without fibers. Finally, an interaction formula for the shear and compressive strength was proposed on the basis of the experimental results, to predict the shear load-carrying capacity of the cast-in-place UHPC structures.


Author(s):  
C. Sauer ◽  
F. Bagusat ◽  
M.-L. Ruiz-Ripoll ◽  
C. Roller ◽  
M. Sauer ◽  
...  

AbstractThis work aims at the characterization of a modern concrete material. For this purpose, we perform two experimental series of inverse planar plate impact (PPI) tests with the ultra-high performance concrete B4Q, using two different witness plate materials. Hugoniot data in the range of particle velocities from 180 to 840 m/s and stresses from 1.1 to 7.5 GPa is derived from both series. Within the experimental accuracy, they can be seen as one consistent data set. Moreover, we conduct corresponding numerical simulations and find a reasonably good agreement between simulated and experimentally obtained curves. From the simulated curves, we derive numerical Hugoniot results that serve as a homogenized, mean shock response of B4Q and add further consistency to the data set. Additionally, the comparison of simulated and experimentally determined results allows us to identify experimental outliers. Furthermore, we perform a parameter study which shows that a significant influence of the applied pressure dependent strength model on the derived equation of state (EOS) parameters is unlikely. In order to compare the current results to our own partially reevaluated previous work and selected recent results from literature, we use simulations to numerically extrapolate the Hugoniot results. Considering their inhomogeneous nature, a consistent picture emerges for the shock response of the discussed concrete and high-strength mortar materials. Hugoniot results from this and earlier work are presented for further comparisons. In addition, a full parameter set for B4Q, including validated EOS parameters, is provided for the application in simulations of impact and blast scenarios.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


Sign in / Sign up

Export Citation Format

Share Document