scholarly journals The influence of the inter-ply hybridisation on the mechanical performance of composite laminates: Experimental and numerical analysis

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110232
Author(s):  
Hussein Dalfi ◽  
Anwer J Al-Obaidi ◽  
Hussein Razaq

Recently, high tensile fibres composite laminates (i.e. glass composite laminates) have been widely used in the civil and military applications due to their superior properties such as lightweight, fatigue and corrosion resistance compared to metals. Nevertheless, their brittle fracture behaviour is a real downside for many sectors. In the present study, the impact of the hybridisation of Kevlar woven layers with glass woven layers on the reducing the strain failure problem in pure glass woven laminates is investigated. In this work, multi-layers Kevlar-glass with different stacking sequences have been used to prepare the hybrid composite laminates using vacuum–assisted resin moulding method. The influence of the layers hybridisation on the mechanical performance of composites laminates was investigated using tensile strength tests. Furthermore, finite element analysis is performed to analyse the mechanical response of the hybrid composite laminates using Abaqus software. The elastic constants of woven fabric layers in the numerical study were predicted through geometric model based on the textile geometry and analytical method in order to assert accuracy of the predicted elastic constants. The experimental results showed that the hybrid composite laminates tend to fail more slowly than glass woven laminates, which illustrates low strain to failure. In the theoretical part of the study, it was found that the proposal model can be useful to capture the mechanical behaviour and the damage failure modes of hybrid laminates. Thus, the catastrophic failure can be avoided in these laminates.

2015 ◽  
Vol 665 ◽  
pp. 277-280 ◽  
Author(s):  
Aniello Riccio ◽  
S. Saputo ◽  
A. Sellitto ◽  
A. Raimondo ◽  
R. Ricchiuto

The investigation of fiber-reinforced composite laminates mechanical response under impact loads can be very difficult due to simultaneous failure phenomena. Indeed, as a consequence of low velocity impacts, intra-laminar damage as fiber and matrix cracking and inter-laminar damage, such as delamination, often take place concurrently, leading to significant reductions in terms of strength and stability for composite structure. In this paper a numerical study is proposed which, by means of non-linear explicit FEM analysis, aims to completely characterize the composite reinforced laminates damage under low velocity impacts. The numerical investigation allowed to obtain an exhaustive insight on the different phases of the impact event considering the damage formation and evolution. Five different impact locations with the same impact energy are taken into account to investigate the influence on the onset and growth of damage.


2018 ◽  
Vol 49 (2) ◽  
pp. 162-180 ◽  
Author(s):  
Zhenyu Wu ◽  
Maolin Wang ◽  
Zhiping Ying ◽  
Xiaoying Cheng ◽  
Xudong Hu

This paper reports the mechanical response of semi-hexagonal part with three different multi-layer reinforcements. Unidirectional, plain woven and orthogonal fabric under quasi-static axial compression were considered. Meso-scale finite element numerical models with failure criterion were also established to simulate the onset and development of internal damage during the compression process. There were two different crush-failure modes occurring in the crush tests of the three different composite samples: a splaying mode for samples with unidirectional fabric, a buckling mode for samples with 3D orthogonal woven fabric and a mixture mode of both buckling and splaying for samples with the plain woven fabric. The samples reinforced by unidirectional fiber have the highest specific energy absorption and lowest peak loading, whereas the samples by 3D orthogonal fabric present the lowest specific energy absorption and highest peak loading. It was also demonstrated by a numerical model that the existence of Z-binder suppresses the delamination by restraining the expanding of warp and weft yarns. The comparison of numerical results and experimental data indicates that the structure of reinforcement has a significant role in the mechanical performance of textile composite.


2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


2021 ◽  
pp. 002199832110495
Author(s):  
Yinan Wang ◽  
Fu-Kuo Chang

This work presents numerical simulation methods to model the mechanical behavior of the multifunctional energy storage composites (MESCs), which consist of a stack of multiple thin battery layers reinforced with through-the-hole polymer rivets and embedded inside carbon fiber composite laminates. MESC has been demonstrated through earlier experiments on its exceptional behavior as a structural element as well as a battery. However, the inherent complex infrastructure of the MESC design has created significant challenges in simulation and modeling. A novel homogenization technique was adopted to characterize the multi-layer properties of battery material using physics-based constitutive equations combined with nonlinear deformation theories to handle the interface between the battery layers. Second, mechanical damage and failure modes among battery materials, polymer reinforcements, and carbon fiber-polymer interfaces were characterized through appropriate models and experiments. The model of MESCs has been implemented in a commercial finite element code in ABAQUS. A comparison of structural response and failure modes from numerical simulations and experimental tests are presented. The results of the study showed that the predictions of elastic and damage responses of MESCs at various loading conditions agreed well with the experimental data. © 2021


Author(s):  
S Boria ◽  
A Scattina ◽  
G Belingardi

In the last years, the spread of composite laminates into the engineering sectors was observed; the main reason lies in higher values of strength/weight and stiffness/weight ratios with respect to conventional materials. Firstly, the attention was focused on fibres reinforced with thermosetting matrix. Then, the necessity to move towards low density and recyclable solutions has implied the development of composites made with thermoplastic matrix. Even if the first application of thermoplastic composites can be found into no structural parts, the replacement of metallic structural parts with such material in areas potentially subjected to impact has become worthy of investigation. Depending on the field of application and on the design geometry, in fact, some components can be subjected to repeated impacts at localized sites either during fabrication, activities of routine maintenance or during service conditions. When composite material was adopted, even though the impact damage associated to the single impact event can be slight, the accumulation of the damage over time may seriously weaken the mechanical performance of the structure. In this overview, the capability of energy absorption of a new composite completely made of thermoplastic material was investigated. This material was able to combine two conflicting requirements: the recyclability and the lightweight. In particular, repeated impacts at low velocity, on self-reinforced laminates made of polypropylene (PP), were conducted by experimental drop dart tests. Repeated impacts up to the perforation or up to 40 times were performed. In the analysis, three different energy levels and three different values of the laminate thicknesses were considered in order to analyse the damage behaviour under various experimental configurations. A visual observation of the impacted specimens was done, in order to evaluate the damage progression. Moreover, the trend of the peak force interchanged between specimen and dart and the evolution of both the absorbed energy and of the bending stiffness with the impacts number were studied. The results pointed out that the maximum load and the stiffness of the specimens tended to grow increasing the number of the repeated impacts. Such trend is opposite compared to the previous results obtained by other researchers using thermosetting composites.


Author(s):  
Tizian Bucher ◽  
Adelaide Young ◽  
Min Zhang ◽  
Chang Jun Chen ◽  
Y. Lawrence Yao

To date, metal foam products have rarely made it past the prototype stage. The reason is that few methods exist to manufacture metal foam into the shapes required in engineering applications. Laser forming is currently the only method with a high geometrical flexibility that is able to shape arbitrarily sized parts. However, the process is still poorly understood when used on metal foam, and many issues regarding the foam's mechanical response have not yet been addressed. In this study, the mechanical behavior of metal foam during laser forming was characterized by measuring its strain response via digital image correlation (DIC). The resulting data were used to verify whether the temperature gradient mechanism (TGM), well established in solid sheet metal forming, is valid for metal foam, as has always been assumed without experimental proof. Additionally, the behavior of metal foam at large bending angles was studied, and the impact of laser-induced imperfections on its mechanical performance was investigated. The mechanical response was numerically simulated using models with different levels of geometrical approximation. It was shown that bending is primarily caused by compression-induced shortening, achieved via cell crushing near the laser irradiated surface. Since this mechanism differs from the traditional TGM, where bending is caused by plastic compressive strains near the laser irradiated surface, a modified temperature gradient mechanism (MTGM) was proposed. The densification occurring in MTGM locally alters the material properties of the metal foam, limiting the maximum achievable bending angle, without significantly impacting its mechanical performance.


2020 ◽  
pp. 152808372096074
Author(s):  
Mohamed A Attia ◽  
Marwa A Abd El-baky ◽  
Mostafa M Abdelhaleem ◽  
Mohamed A Hassan

An experimental investigation on the mechanical performance of interlayer hybrid flax-basalt-glass woven fabrics reinforced epoxy composite laminates has been performed. The tensile, flexural, in-plane shear, interlaminar shear, bearing, and impact properties of the fabricated laminates were investigated. Test specimens were fabricated using vacuum bagging process. Failure modes of all specimens were recorded and discussed. Results proved that the mechanical properties of flax-basalt-glass hybrid laminates are highly dominated by the reinforcement combinations and plies stacking sequence. Hybridizing flax fiber reinforced composite with basalt and/or glass fabrics provides an effective method for enhancing its tensile, flexural, in-plane shear, interlaminar shear, and bearing properties as well as controls the impact strength of the composite. The fabricated hybrids are found to have good specific mechanical properties benefits. Amongst the studied flax/basalt/glass hybrids, FBGs has the highest tensile properties, GBFs has the highest flexural and impact properties, and GFBs has the best shear and bearing properties. Flax-basalt-glass hybrid composites with different layering sequence seem to be an appropriate choice for lightweight load bearing structures.


2020 ◽  
Vol 20 (06) ◽  
pp. 2040001 ◽  
Author(s):  
Wensu Chen ◽  
Thong M. Pham ◽  
Mohamed Elchalakani ◽  
Huawei Li ◽  
Hong Hao ◽  
...  

Basalt fiber-reinforced polymer (BFRP) has been applied for strengthening concrete structures. However, studies on reinforced concrete (RC) slabs strengthened by BFRP strips under impact loads are limited in open literature. This study investigates the efficiency of using BFRP strips with various strengthening layouts and anchoring schemes on the impact resistance of RC slabs. A total of 11 two-way square slabs were prepared and tested, including one reference specimen without strengthening and ten slabs strengthened with BFRP strips and/or anchors. The RC slabs were impacted by a drop weight with increasing height until slab failure. The observed failure modes include punching shear failure, BFRP sheet debonding and reinforcement fracture. The failure modes and the effects of using various strengthening schemes on the impact resistant capacity of RC slabs were examined. The quantitative measurements, such as impact velocity, indentation depth and diameter, were compared and discussed. In addition, numerical studies were carried out by using LS-DYNA to simulate the impact tests of RC slabs with and without BFRP strengthening. With the calibrated numerical model, the impact behavior of slabs with various dimensions and strengthening layouts under different impact intensities can be predicted with good accuracy.


2020 ◽  
pp. 096739112097008
Author(s):  
Mengjia Li ◽  
Puhui Chen

A finite element model with periodic boundary conditions was developed to investigate the influence of different Z-pin parameters including diameter, spacing, and insertion angle of Z-pin on the elastic properties of composite laminates. Benchmark tests were carried out to verify the FE model and a series of parametric analyses were subsequently performed. In general, all the elastic moduli, excluding the through-thickness modulus ( Ez), decreased while Ez increased nonlinearly with increasing Z-pin diameter and decreasing spacing. The reduction of Ey (transverse modulus) was approximately 40% of that of Ex (longitudinal modulus), while the reduction of Gxy is similar to that of Ex. Besides, Gxz and Gyz were reduced by approximately half of the reduction of Gxy. Although the impact of insertion angle was obvious on Ez, it was negligible on the other five moduli.


Sign in / Sign up

Export Citation Format

Share Document