Different Inclusion Contents in H13 Steel: Effects on VHCF Response of Gaussian Specimens

2015 ◽  
Vol 665 ◽  
pp. 49-52 ◽  
Author(s):  
A. Tridello ◽  
D.S. Paolino ◽  
G. Chiandussi ◽  
Massimo Rossetto

The effect of different inclusion contents on the VHCF strength of H13 tool steels is presented. Two different H13 tool steels were investigated: the Uddeholm Orvar® 2 Micronized obtained by conventional casting, and the Uddeholm Orvar® Supreme obtained by electroslag remelting (ESR). Ultrasonic tests were performed on Gaussian specimens (risk volume about 2300 mm3) up to 1010 cycles or up to failure and fracture surfaces were investigated with SEM in order to analyze the inclusions from which VHCF crack nucleated. Experimental results show that the VHCF strength estimated by using the Murakami’s model of the H13 Uddeholm Orvar® Supreme steel is about 15% larger than that of the H13 Uddeholm Orvar® 2 Micronized steel.

Author(s):  
Palani Karthikeyan ◽  
Sumit Pramanik

In industry, thermally shocked components lead to early failures and unexpected breakdowns during production resulting in huge losses in profit. Thus, the present study investigates the as-received, hardened and hardened and nitrogen treated H13 tool steels subjected to a thermal shock gradient similar to the actual industrial applications. The thermal shock gradients were created by using an in-house-built thermal shock fatigue cyclic treatment machine. The effect of thermal shock fatigue cyclic treatments at 1000 and 2000 thermal shock cycles in hot and molten metal chambers was noticed. All the thermal shock fatigue cyclic-treated samples were analysed by hardness, X-ray diffraction, microscopy and magnetic tests. The interesting changes in hardness, distorted crystal structure and crack initiation were found to be different for differently treated H13 tool steel specimens. The molten aluminium was more prone to stick to the surface of as-received as well as hardened and nitrogen treated steel compared to the hardened H13 steel specimens, which would delay the crack initiation. The wear resistance properties of the hardened H13 steel specimens were found to be higher than as-received and hardened and nitrogen treated H13 steel specimens after thermal shock fatigue cyclic treatment. The loss in magnetic properties was significant for the hardened and hardened and nitrogen treated samples compared to as-received H13 tool steel specimens. Therefore, the present 1000 and 2000 thermal fatigue cycles for 30 s at 670 °C would be worthy to predict the proper heat treatment method to design the parameters as well as the life of die-casting components and to help in the economical production of casting.


2008 ◽  
Vol 367 ◽  
pp. 177-184 ◽  
Author(s):  
D. Tseronis ◽  
I.F. Sideris ◽  
C. Medrea ◽  
Ionel Chicinaş

This paper studies the fracture surfaces of an aluminium hot extrusion die that broke down during operation. The die was constructed, from H13 steel and was intended for the production of 60,000 Kg of aluminium profile. The male part fractured during operation after the production of 500 Kg profile. Initially, the machine and thermal treatments that were applied for construction of the die were collected and studied. The die was carefully inspected visually with a stereoscope. The fracture surfaces, some cracks, and the structure that was not affected by the failure, were investigated by optical microscopy. The thickness, quality and homogeneity of the nitrated layers were inspected. Additional information concerning the fracture was obtained by examining a primary crack using a scanning electron microscope and chemical analysis of the material was made using EDX attachment. The paper reports on some interesting observations relating to the fractured component, the type of the fractures, and the quality of the heat treatments, and presents some of the probable causes that led to the premature failure of the die.


2017 ◽  
Vol 40 (11) ◽  
pp. 1783-1794 ◽  
Author(s):  
A. Tridello ◽  
D.S. Paolino ◽  
G. Chiandussi ◽  
M. Rossetto

2009 ◽  
Vol 416 ◽  
pp. 455-460 ◽  
Author(s):  
Qiu Lian Dai ◽  
Can Bin Luo ◽  
Yu Rong Lv

Effects of some alloying additives such as Cr, Co, Ni, Mn, Al on the microstructures, resulting fracture surfaces of bronze base bonds and diamond composites as well as the bonding between the metal bonds and diamond grits were studied. Experimental results revealed that under the hot pressing conditions sufficient alloying couldn’t develop as it does in the cast bronze. The degree of segregation varied with the melting point of the alloying elements. The metal with higher melting point led to a more serious segregation. Addition of strong carbide formation elements like Cr, Co could improve the bonding between the metal bonds and diamond grits and the retension of metal bond for diamond was enhanced in a way. However the addition of Al, Mn and Ni did not bring much improvement on the bonding between the metal bonds and the diamond grits.


2014 ◽  
Vol 800-801 ◽  
pp. 590-595
Author(s):  
Qing Zhang ◽  
Song Zhang ◽  
Jia Man ◽  
Bin Zhao

Surface roughness has a significant effect on the performance of machined components. In the present study, a total of 49 end milling experiments on AISI H13 steel are conducted. Based on the experimental results, the signal-to-noise (S/N) ratio is employed to study the effects of cutting parameters (axial depth of cut, cutting speed, feed per tooth and radial depth of cut) on surface roughness. An ANN predicting model for surface roughness versus cutting parameters is developed based on the experimental results. The testing results show that the proposed model can be used as a satisfactory prediction for surface roughness.


Author(s):  
C K Toh

The paper is concerned with a feasibility study of tool life and tool wear when employing high depths of cut (between 10 and 20 mm) and different cutter path strategies in the high-speed milling (HSM) of hardened die/mould steel. Following a review of previous work, experimental data are presented on the peripheral milling of hardened AISI H13 steel (HRC 52) using raster, single-direction raster and offset machining strategies. Coated carbide corner-radius end mills with a diameter of 10mm were employed with a fixed cutting speed of 314m/min and a feed per tooth of 0.067mm. From the experimental results it was realized that a raster cutter path strategy (combination of up and down milling) combined with high-depth roughing achieved the lowest tool wear. The offset strategy achieved the lowest tool life at all axial depths of cut within the range investigated. The experimental results clearly show that cutter path strategies and axial depths of cut have a significant effect on the tool life and tool wear for the cutters employed.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1247
Author(s):  
Xijie Wang ◽  
Guangqiang Li ◽  
Yu Liu ◽  
Yulong Cao ◽  
Fang Wang ◽  
...  

The characteristics of primary carbides in a commercial-sized (one ton) electroslag remelting (ESR) ingot of AISI H13 steel were investigated. The interaction between the primary carbides and inclusions was also clarified. The results indicate that there are two types of primary carbides, V-rich and Mo-rich primary carbides, in the H13 ESR ingot. The quantity, the area fraction, and the size of the two primary carbides tend to decrease from the center of the H13 ESR ingot to the outer surface. Additionally, the V-rich primary carbide is obviously larger than the Mo-rich primary carbide. The Al2O3 inclusion can promote the precipitation of the V-rich primary carbide, while the MnS inclusion encourages the precipitation of Mo-rich primary carbide. The CaO∙Al2O3 inclusion cannot act as the nucleation site for the precipitation of the two primary carbides. The solid fraction that the V-rich primary carbide begins to precipitate ranges from 0.965 to 0.983, and that for the Mo-rich primary carbide and the MnS inclusion change from 0.9990 to 0.9998 and from 0.989 to 0.990, respectively.


1991 ◽  
pp. 40-45
Author(s):  
N. F. Yakovlev ◽  
Yu. M. Skrynchenko ◽  
S. I. Tishaev ◽  
L. D. Moshkevich ◽  
A. N. Prohorov ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 1714-1718
Author(s):  
Kota Kataoka ◽  
Hideshi Nakatsu

Hot work tool steels generally consist of the tempered martensitic structure and they are high strength materials using all strengthening mechanisms, such as strain strengthening, grain refinement strengthening, solid solution strengthening and precipitation strengthening. It is necessary to use the grain refinement strengthening that can bring both higher strength at high temperature and toughness than those of conventional steels. In this study, hot work tool steels with ultra-fine grained structure were fabricated by the mechanical alloying treatment. The powder mixture of atomized AISI H13 steel powders and Y2O3 powders was mechanically alloyed by a planetary ball mill for 360ks. The mechanically alloyed powders were packed in a stainless steel tube in a vacuum and then consolidated by hot rolling for full densification. The consolidated material was austenitized at 1293K, which was general austenitizing temperature of H13 steel, and then oil-quenched. Through this process, an ultra-fine grained H13 steel with equiaxed grains of about 0.3 microns in diameter could be obtained. A quenched hardness of the developed steel was comparable to that of an AISI M2 high speed steel produced by melting and hot-working process. Furthermore, although tempered hardness of the M2 steel decreases with increasing tempering temperature of 848K or higher, that of the developed steel does not decrease so much. Therefore the hardness of the developed steel exceeds that of the M2 steel at tempering temperatures over 923K.


Sign in / Sign up

Export Citation Format

Share Document