Elastic Buckling Moment of Continuous Composite Beams

2016 ◽  
Vol 691 ◽  
pp. 86-95
Author(s):  
Tomas J. Zivner ◽  
Rudolf B. Aroch ◽  
Michal M. Fabry

Lateral-torsional buckling is one of the criteria in the design of steel and composite beams in ultimate limit state. This paper deals with lateral-torsional buckling of double-span continuous composite beams subjected to two different loadings. The main objective of the paper is the comparison of the elastic buckling moment values of composite continuous beams performed according to approximation formulas of Mcr,A from codes [2] and different sources [3] to more exact values Mcr,E obtained by computer programs based on finite element method [1P]. The results will be presented in the form of elastic buckling moment ratios Mcr,A / Mcr,E.

2015 ◽  
Vol 21 (7) ◽  
pp. 902-911 ◽  
Author(s):  
Zdeněk Kala

The paper deals with the analysis of reliability of a hot-rolled steel IPE-beam designed according to Eurocodes. A beam at its ultimate limit state is considered. The load acting on the beam consists of permanent and long-term single variation actions. The beam is loaded with end bending moments about the major principal axis. The beam is susceptible to lateral torsional buckling between the end supports. Reliability of the beam is assessed using probabilistic analysis based on the Monte Carlo method. Failure probability is a function of the random variability of the loadcarrying capacity and the random variability of load effects. The variability of the load-carrying capacity is influenced by the variability of initial imperfections. Imperfections are considered according to experimental research. Numerical studies showed that the failure probability is significantly misaligned. High values of failure probability were obtained for slender beams, for beams loaded only by permanent load action, and for beams loaded only by long-term single variation load. In further studies the values of partial safety factors of load and resistance were calibrated so that the failure probability had a target value of 7.2E–5. Relatively high values of partial safety factors were obtained especially for beams with high slenderness.


2014 ◽  
Vol 969 ◽  
pp. 259-264
Author(s):  
Zdenek Kala ◽  
Jan Valeš

Some particular and selected problems aimed at ultimate limit state and probability-based studies pertaining to lateral-torsional buckling of steel beams are described. Stochastic analysis of the ultimate limit state of a slender member IPE220 under bending was elaborated. The values of non-dimensional slenderness for which the statistical characteristics of random load-carrying capacity are maximal were determined. The stochastic computational model was created in the programme ANSYS. Geometric nonlinear solution was employed. In the conclusion of the article, the question of the random effect of the initial rotation of the cross-section on the load-carrying capacity is discussed.


2020 ◽  
Vol 23 (11) ◽  
pp. 2442-2457
Author(s):  
Noémi Seres ◽  
Krisztina Fejes

This article focuses on the lateral-torsional buckling resistance of girders with slender, class 4 cross-sections with a research aim to check the accuracy of the design resistance model of EN1993-1-1 and EN1993-1-5 on the coupled instability of lateral-torsional buckling and local plate buckling resistances. The current Eurocode-based design method considers in the effective cross-sectional resistance calculation that yield strength is reached in the extreme fibre of the cross-section, and the reduction factor [Formula: see text] related to local plate buckling is calculated based on this assumption. However, if lateral-torsional buckling occurs, maximum stress in the web can be significantly smaller at the ultimate limit state which is not considered in the effective cross-sectional resistance calculation. On the other side, EN1993-1-1 proposes to consider the effective bending moment resistance in the relative slenderness calculation of lateral-torsional buckling, which is in contradiction with the general definition of the relative slenderness ratio [Formula: see text], which should refer to the plastic resistance divided by the critical load of the structure. This article aims to check if the current Eurocode-based design rules need improvement and to check the effect of the above-mentioned specific issues on the calculated lateral-torsional buckling resistance. An extensive numerical research programme is executed to check and compare the lateral-torsional buckling resistance of class 3 (as reference) and class 4 cross-sections, and results are compared to Eurocode-based design models.


2020 ◽  
Vol 10 (11) ◽  
pp. 3973
Author(s):  
Nikola Baša ◽  
Nataša Kopitović Vuković ◽  
Mladen Ulićević ◽  
Mladen Muhadinović

Fiber-reinforced polymers (FRP) are commonly used as internal reinforcement in RC structures in aggressive environments. The design of concrete elements reinforced with FRP bars is usually ruled by serviceability criteria rather than the ultimate limit state. Six continuous concrete beams over two spans with longitudinal and transverse glass FRP (GFRP) reinforcement were investigated until failure to estimate the effects of different reinforcement arrangements on the limit states of continuous beams. The ratio of longitudinal reinforcement between the midspan and middle support sections (i.e., the design moment redistribution) and the type of GFRP reinforcement were the main parameters. The experimental results were compared to prediction models and other code formulations under serviceability and ultimate limit states. The bond-dependent coefficient kb was investigated to assess adhesion conditions for GFRP reinforcement and concrete. The results showed that moment redistribution in continuous beams with GFRP reinforcement happens with slippage between the reinforcement and concrete in the middle support without the load capacity being reduced. A modified model was suggested for better deflection prediction of continuous beams reinforced with GFRP bars. Based on deformability factors, the tested continuous beams, although containing GFRP reinforcement that has brittle behavior, showed a certain kind of ductile behavior.


Author(s):  
Ю. Г. Москалькова ◽  
С. В. Данилов ◽  
В. А. Ржевуцкая

Постановка задачи. Исследуется метод усиления железобетонных колонн устройством стальной обоймы с обетонированием, который позволяет восстанавливать эксплуатационные показатели колонн, имеющих значительные дефекты и повреждения. Предпосылкой настоящих исследований явилось предположение о том, что усиление стальной обоймой с обетонированием является эффективным способом повышения несущей способности железобетонных колонн, причем вариант приложения нагрузки - только на бетонное ядро или ко всему сечению - существенно на эффективность усиления не влияет. В связи с этим целью исследования является определение необходимости устройства стального оголовка и включения в работу ветвей стальной обоймы при условии обетонирования стержня колонны по всей высоте. Результаты и выводы. Рациональным признан способ передачи нагрузки только на бетонное ядро усиленных колонн, поскольку устройство оголовка стальной обоймы требует применения сложных конструктивно-технологических решений, но при этом дополнительно увеличивает несущую способность незначительно (согласно проведенным исследованиям менее чем на 10 %). Ввиду отсутствия необходимости устройства конструкций стального оголовка снижаются трудоемкость и сроки производства работ по усилению колонн. Statement of the problem. The method of strengthening reinforced concrete columns with a steel clipping and the concrete surfacing is investigated. This method allows one to repair the columns with significant defects and damage. The prerequisite for this study was the assumption of strengthening with a steel clipping and the concrete surfacing is an effective way to increase the ultimate limit state of reinforced concrete columns, furthermore, the option of applying the load (only to the concrete core or to the entire section) does not significantly affect the strengthening effectiveness. In this regard, the purpose of the investigation was to identify the need to include the steel jacketing in the work, on the condition the column is coated with concrete along with the entire height. Results and conclusions. The load transfer method only to the concrete core of the strengthened columns is recognized as rational since the device of the steel clipping head requires the use of complex structural and technological solutions, but at the same time additionally increases the ultimate limit state insignificantly (according to the studies by less than 10 %). Due to the absence of the need to establish structures of the steel jacketing head, the labor intensiveness and terms of work production on strengthening the columns are reduced.


2021 ◽  
Author(s):  
Sara Reichenbach ◽  
Benjamin Kromoser ◽  
Philipp Preinstorfer ◽  
Tobias Huber

<p>With the building industry being one of the main sources of carbon dioxide emission worldwide and concrete being the main construction material, new strategies have to be developed to reduce the carbon footprint thereof. The use of high-performance materials in structural concrete, as for example textile-reinforced concrete (TRC), seems to allow for a reduction of the resource consumption and the carbon emissions. The present paper addresses potential applications of TRC examining the global warming potential (GWP) of a rail platform barrier. The resource consumption is depicted in a parametrical study in terms of the necessary component height and reinforcement area considering both the serviceability limit state (SLS) as well as the ultimate limit state (ULS). The results clearly indicate an achievable reduction of the GWP during construction when using textile reinforcement made of high-performance fibres. Furthermore, an analysis of the European market was conducted to prove the availability of this new reinforcement type. </p>


Sign in / Sign up

Export Citation Format

Share Document