Experimental Study on the Wear of Single Crystal Diamond Tools in Ultra-Precision Cutting of Titanium Alloy

2016 ◽  
Vol 693 ◽  
pp. 1015-1021 ◽  
Author(s):  
Lin Hua Hu ◽  
Ming Zhou

In this paper, ultra-precision cutting experiments were carried out with titanium alloy material Ti-6A1-4V by using single crystalline diamond tools. Experimental results show that the wear patterns of rake face of diamond tools are crater wear and groove wear, the wear patterns of flank face of diamond tools are uniform wear and groove wear, and the wear mechanisms of single crystalline diamond tool are chemical wear and mechanical wear. Graphitization and microcosmic cleavage of the diamond tools occur in the cutting process.

2016 ◽  
Vol 10 (3) ◽  
pp. 411-419
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
◽  
Akira Hosokawa ◽  
Takashi Ueda ◽  
Tatsuaki Furumoto ◽  
...  

In this study, the tool performance of two types of binderless diamond tools – single-crystal diamond (SCD) and nano-polycrystalline diamond (NPD) – is investigated in the high-speed cutting of titanium alloy (Ti-6Al-4V) with a water-soluble coolant. The NPD tool allows for a larger cutting force than the SCD tool by dulling of the cutting edge, despite NPD being harder than SCD. This large cutting force and the very low thermal conductivity of NPD yield a high cutting temperature above 500°C, which promotes the adhesion of the workpiece to the tool face, thereby increasing tool wear. Based on the morphology of the tool edge without scratch marks and the elemental analysis by energy-dispersive X-ray spectroscopy (EDX) of both the flank face and the cutting chips, diffusion-dissolution wear is determined to be the dominant mechanism in the diamond tool. A thin TiC layer seems to be formed in the boundary between the diamond tool and the titanium alloy at high temperatures; this is removed by the cutting chips.


2016 ◽  
Vol 693 ◽  
pp. 982-989 ◽  
Author(s):  
Yuan Jing Zhang ◽  
Guo Jun Dong ◽  
Ming Zhou

This paper performed a series of finite element method (FEM) simulation to investigate the influence of the tool wear on the cutting temperature in the diamond ultra-precision cutting of the aluminum alloy mirror. The two-dimensional FEM model including the diamond tool with the different average width of wear land on flank face was established. A series of ultra-precision cutting experiments using different cutting distance was performed. The tool wear was detected by scanning electron microscopy (SEM), and the cutting temperature was detected by infrared thermal imager. The comparison of the simulation investigations and the experimental investigations was done. The results revealed that the cutting temperature increases with an increase of the average width of wear land on flank face in the FEM simulation. And in the ultra-precision cutting experiments the diamond tool wear becomes severe as the cutting distance increases, meanwhile the severe tool wear results in the higher cutting temperature. Consequently the FEM simulations prove to be right.


2014 ◽  
Vol 625 ◽  
pp. 20-25
Author(s):  
Guo Qing Zhang ◽  
Suet To ◽  
Gao Bo Xiao

In this paper, cutting force and its power spectrum analysis at different tool wear levels are explored. A dynamic model is established to simulate the measured cutting force compositions, and a series of cutting experiments have been conducted to investigate the cutting force evolution with the tool wear progress. Research results reveal that in the time domain, the cutting force in UPRM is characterized as a force pulse follows by a damped vibration signals, the vibration can be modeled by a second order impulse response of the measurement system. While in the frequency domain, it is found that the power spectrum density at the natural frequency of dynamometer increases with the progress of tool wear, which therefore can be utilized to monitor diamond tool wear in UPRM.


2020 ◽  
pp. 251659842096533
Author(s):  
RamaGopal V. Sarepaka ◽  
Sivasakthi Balan ◽  
Somaiah Doodala ◽  
Rakesh Singh Panwar ◽  
D. Rajendra Kotaria

In multiple applications of advanced instrumentation, single-point diamond turning (SPDT) is a popular and effective process to generate novel surfaces with nanometric surface roughness and sub-micron surface irregularities, albeit at a high cost. In SPDT, precision diamond tooling contributes significantly to the process cost escalation. Hence, for SPDT, it is vital to have an optimal precision diamond tool deployment. In this article, details of comprehensive precision diamond tool selection and tool characterization are discussed. Three makes of selected ultra-precision diamond (UPD) tools and standard diamond tools (of a global make), designated as CFT, are considered for this study. In this tool bench-marking exercise, the fabrication of Cu–Be alloy predesigned precision components (PDPCs) of a critical geometry is selected. UPD and CFT tools are deployed to fabricate (under similar machining-metrology conditions) the PDPCs. These diamond tools are evaluated in terms of the quality parameters (variation in radius of curvature, form error, and surface roughness) of the workpieces. Further, to explore the progressive wear of these tools, multiple machining cycles are conducted on these workpieces, and their quality parameters are analyzed. Thus, the precision diamond tools of three makes are benchmarked against the CFT tool. Based on the final outcome of this analysis, suitable recommendations are provided to precision diamond tool manufacturers to improve their product in terms of performance and optimized costs to meet the ever-growing tooling demands of the SPDT community.


Author(s):  
Zengwen Dong ◽  
Shaojian Zhang ◽  
Zhiwen Xiong

In ultra-precision raster milling, the material removal process determines surface integrity. In this study, surface integrity was discussed under diamond tool wear effects in ultra-precision raster milling of a Zn–Al–Cu alloy. The results firstly showed that under high speed cutting in ultra-precision raster milling, quenching took place with phase decomposition (namely twin phase changes) with a deformation thickness of even less than 100 nm. Flank wear enhanced phase changes, promoted surface hardening, degraded surface quality, and increased deformation thickness, but crater wear gave better surface integrity. The intrinsic reason is that flank wear caused more external stress but crater wear was reverse, well supported by finite element simulation in orthogonal cutting. Significantly, it provides a further insight into diamond tool wear effects on surface integrity in ultra-precision raster milling of a Zn–Al–Cu alloy.


2021 ◽  
Vol 21 (9) ◽  
pp. 4735-4739
Author(s):  
Sung-Taek Jung ◽  
Hyun-Jeong Kim ◽  
Eun-Chan Wi ◽  
Jung-Shik Kong ◽  
Joo-Hyung Lee ◽  
...  

Recently, the technology of the industry has been increasing for diffractive optical elements, holograms, optical components, and next-generation display components. The advanced high value-added industry is designing fine patterns on ultra-precision optical components and applying them to various industries. In the case of the ultra-fine pattern, a contact-type machining technique is required because it requires a precise pattern in nano-scale units. In this paper, the fabrication technology of ultra-precision diamond which is essential in the ultra-precision processing technology was suggested. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam (FEI COMPANY, system Nova 600) equipment. The back fire method was applied without metal coating in order to carry out the process study and the focused beam of 30 keV Ga+ ions were carried out processing for various fabrication of diamond cutting tools. As a result of applying the backfire method through the process experiment, the cutting edge width of the ultra-precision diamond tool was verified 275 nm.


2011 ◽  
Vol 325 ◽  
pp. 153-158 ◽  
Author(s):  
Akihiko Kubo ◽  
Yasushi Mochida ◽  
Junichi Tamaki ◽  
Katsuko Harano ◽  
Hitoshi Sumiya ◽  
...  

Face cutting of tungsten carbide was conducted using two monocrystalline diamond tools and three polycrystalline diamond tools to investigate the wear characteristics in terms of the crystal structure and composition of the diamond. It was found that the wear of the monocrystalline diamond tool depends on the crystal planes that form the rake face and flank face of the cutting tool, and a cleavage fracture occurs when the cutting force acts as a shear force on the (111) crystal plane. The binderless nano-polycrystalline diamond tool exhibits excellent wear resistance beyond those of the sintered polycrystalline diamond tool and chemical vapour deposition polycrystalline diamond tool, as well as better wear resistance than the monocrystalline diamond tool.


2012 ◽  
Vol 565 ◽  
pp. 382-387
Author(s):  
Kazuki Imazato ◽  
Koichi Okuda ◽  
Hiroo Shizuka ◽  
Masayuki Nunobiki

This paper deals with finish cutting of thermally affected layer on cemented carbide by a diamond tool in order to machine efficiently the carbide mold with high accuracy and good surface without a polishing. The microstructure of thermally affected layer left by EDM process was observed and analyzed by EPMA. Its hardness and thickness were measured. Subsequently, the cutting experiments were carried out by using a PCD tool and an ultra-precision cutting machine. The effects of the thermally affected layer on the surface roughness, the cutting force and the tool wear were investigated. As a result, it was confirmed that the cutting force decreased with an increase in the depth of cut. Furthermore, it was found that the tool wear and the surface roughness obtained by cutting the thermally affected layer were greater than those of the original workpiece.


2014 ◽  
Vol 1017 ◽  
pp. 696-702
Author(s):  
Eiji Kondo ◽  
Ryuichi Iwamoto ◽  
Yuya Kobaru

Large wear of diamond tools for ultra-precision cutting of soft metals deteriorates quality of machined surface, and the worn tools have to be replaced with new tools when the tool wear reaches limited wear land width of cutting edge generating finished surface. However, it is difficult to predict the tool life since all cutting tools have individual tool life. Therefore, the purpose of this study is to estimate wear land width of cutting edge of a single crystal diamond tool having large nose radius by using static cutting forces during machining. As a result of the cutting tests and measurements, it was found that the ratio of thrust force to principal force had good relation with the ratio of flank wear land area to cutting cross section area. Furthermore, according to some detailed observation of flank wear, width of flank wear land was greatly related to uncut chip thickness obtained under different cutting conditions and it was found that width of flank wear land could be estimated by measured static cutting forces and cutting conditions.


2012 ◽  
Vol 06 ◽  
pp. 583-588
Author(s):  
Geon Lee ◽  
Sung-Hyun Kim ◽  
Nam-Su Kwak ◽  
Jae-Yeol Kim

The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50nm for some precision parts but not in all. The machining system and technology should be at very high preformed level in order to accomplish this degree of the ultra-precision.


Sign in / Sign up

Export Citation Format

Share Document