Effect of Buried Powder Sintering on the Electrical and Piezoelectric Properties of CuO-Modified (Li,K,Na)(Nb,Sb)O3 Lead-Free Piezoceramics

2016 ◽  
Vol 697 ◽  
pp. 211-215 ◽  
Author(s):  
Lin Ling Li ◽  
Yu Hua Zhen

A strong desire for environmental protection and human health care urgently requires us to find an environmental friendly type of piezoelectric material to replace the lead ones. In this study, (LixK0.5-xNa0.5)(Nb0.97Sb0.03)O3-1mol%CuO (x = 0, 0.05, 0.1 ,0.2 ,0.5, abbreviated as CuO-LxKNNS) lead-free piezoelectric ceramics have been fabricated by a conventional solid-state reaction route. We focused on the comparison of buried powder sintering with exposed sintering. The effect of buried powder sintering method on density, structure and dielectric, piezoelectric properties of CuO-LxKNNS ceramics has been investigated. It was found that the density increased greatly when the buried powder sintering method was used, which was effective in inhibiting the volatilization of alkali metal oxides compared with exposed sintering method. Piezoelectric and dielectric properties showed a similar tendency with the density. These ceramics showed an obvious phase transition with increasing the Li content. CuO-LxKNNS ceramics showed orthorhombic symmetry when x= 0, but turned to be tetragonal symmetry when x ≥ 0.05. The optimal composition of CuO-LxKNNS with buried powder sintering method was x = 0.05 sintered at 1020 °C, for which the maximum value of the piezoelectric constant (d33) was 180pC/N, the density (ρ) was 4.40g/cm3, the room temperature relative dielectric constant (εr) was 270 and the dielectric loss (tanδ) was 0.07.

2011 ◽  
Vol 328-330 ◽  
pp. 1131-1134
Author(s):  
Qian Chen ◽  
Zhi Jun Xu ◽  
Rui Qing Chu ◽  
Yong Liu ◽  
Ming Li Chen ◽  
...  

Lead-free piezoelectric ceramics Sr2Bi4-xGdxTi5O18 were prepared by conventional solid-state reaction method. Pure bismuth layered structural ceramics with uniform gain size were obtained in all samples. The effect of Gd-doping on the dielectric, ferroelectric and piezoelectric properties of Sr2Bi4Ti5O18 ceramics were also investigated. It was found that that Gd3+ dopant gradually decreased the Curie temperature (Tc) with the lower dielectric loss (tand) of SBTi ceramics. In addition, Gd-doping with appropriate content improved the ferroelectric and piezoelectric properties of the SBTi ceramics. The piezoelectric constant (d33) of the Sr2Bi3.9Gd0.1Ti5O18 ceramic reached the maximum value, which is 22 pC/N. The results showed that the Sr2Bi4-xGdxTi5O18 ceramic was a promising lead-free piezoelectric material.


2010 ◽  
Vol 663-665 ◽  
pp. 1310-1313 ◽  
Author(s):  
Yue Ming Li ◽  
Liang Jiang ◽  
Zhong Yang Shen ◽  
Run Hua Liao ◽  
Zhu Mei Wang

Lead-free (1-x)K0.49Na0.51NbO3-xLiTaO3 (x=0.00-0.07) piezoceramics were fabricated by the conventional solid-state sintering method, the effects of LiTaO3 content on the phase structure and piezoelectric properties of the ceramics were investigated. All the ceramics show single perovskite structure with a phase transition from an orthorhombic symmetry to a tetragonal one across an orthorhombic-tetragonal coexistence region with 0.04<x<0.06. For the ceramic sample with x=0.05, due to the coexistence of orthorhombic and tetragonal phases near room temperature, enhanced piezoelectric constant d33=236 pC/N and planar electromechanical coupling coefficient kp=40.9% are observed. In addition to other good electrical properties such as εr=969, tgδ=0.015 and Qm=41, this ceramic is a promising lead-free piezoelectric material.


2012 ◽  
Vol 512-515 ◽  
pp. 1218-1221
Author(s):  
Min Chang Kuan ◽  
Kai Huang Chen ◽  
Chien Min Cheng ◽  
Chun Cheng Lin ◽  
Shih Fang Chen

The structure and electrical characteristics of the lead-free Lix(K0.5Na0.5)1-x(Nb0.8Ta0.2)O3 (x=0~0.05) piezoelectric ceramics for the conventional solid-state reaction method and the B-side pre-calcined method were achieved and compared. For the B-side pre-calcined method, the lead-free ceramic material exhibited the excellent electrical and piezoelectric properties. The relative dielectric constant (εr) and loss (tan δ) of the Lix(K0.5Na0.5)1-x(Nb0.8Ta0.2)O3 for x=0.03 using the B-side pre-calcined method were 1223 and 0.021, respectively. In addition, the electromechanical coupling factors (kp) and Curie temperature (Tc) was 48.5 % and 315°C. Finally, the electrical properties of the lead-free Lix(K0.5Na0.5)1-x(Nb0.8Ta0.2)O3(x=0~0.05) homogeneity ceramics improved by the B-side pre-calcined method were also investigated and discussed.


2014 ◽  
Vol 1035 ◽  
pp. 422-425
Author(s):  
Jian Yong Guo ◽  
Tao Sheng Zhou ◽  
Ji Hong Liao

The Bi0.5(Na1-xKx)0.5-yBaTiO3(BNK-BT) lead-free ceramics have been prepared by the solild reactive sintering method. XRD patterns show the BNK-BT ceramics had a perovskite structure. Piezoelectric and dielectric properties of the ceramics also have been studied. The results show that the samples had the best piezoelectric and dielectric properties when x=0.20, y=0.10. And the maximum of d33is 149 pC/N, while the relative dielectric constant is 1087.


2009 ◽  
Vol 66 ◽  
pp. 238-241
Author(s):  
Xiao Fang Liu ◽  
Hua Jun Sun ◽  
Ming Wei ◽  
C.X. Xiong

The Nb modified PZT piezoelectric ceramic was synthesized by conventional solid-state reaction, where all of different particle sizes had the same physical properties. 0-3 modified PZT/PVDF composites were formed by hot-pressing method. The particle size effect of modified PZT on the relative dielectric and piezoelectric properties of the composites were investigated. The relative dielectric constant εr, piezoelectric constant d33 and electromechanical coupling factor kp were higher in the composite containing larger PZT particle size. The microstructures of the composites were studied by SEM, the composite with the finer PZT particle size was more homogeneous, but larger particle size was easy to be contacted. In a high volume fraction particle-loaded composite, some piezoelectric ceramic particle appeared to be in contact, as in a 1-3 connectivity pattern. The larger particle size of modified PZT itself could be seen as the grain of modified PZT contact in a 1-3 connectivity pattern and easy to be contacted each other compared to the finer particle size in the composites, thus reducing the resistance of the composites and the poling process became effective, which led to higher properties. The optimal particle size of PZT is about 100μm, the Nb modified PZT/PVDF (volume fraction 70/30) composite show higher dielectric and piezoelectric properties than the others, εr=156.6, d33=69pC/N and kp=0.358.


2014 ◽  
Vol 1061-1062 ◽  
pp. 91-95
Author(s):  
Rui Zhu Zhang ◽  
Wen Peng Guo ◽  
Gao Lei Zhao

(K,Na)NbO3(KNN)-based lead-free piezoelectric ceramic could be fabricated by ordinary solid sintering method.This paper reported preferable properties of solid solutions (1-x)(Na0.535K0.480)NbO3-xLiNbO3(x=0.050,0.055,0.060,0.065 and 0.070 successively) all sintered at 1060°C.The nonconservation of charge suppressed negative effects caused by evaporations of K&Na and doped Li occupied A sites in ABO3perovskite structure lattices led to the intensification of lattice distortion.XRD result showd phase transition from coexistence of orthorhombic and tetragonal symmetry to tetragonal.Polymorphic phase boundary could be observed when 0.050≤ x≤ 0.060.Coexistence of orthorhombic and tetragonal phases brought improvements of piezoelectric coefficient d33and electromechanical coupling factor kp,whose top values were 162 pC/N and 28.1% in this paper. Positive correlation between the Curie temperature and Li content proved that a distorted crystal lattice needed more energy to accomplish its phase transition from tetragonal to cubic than a normal one.


2018 ◽  
Vol 281 ◽  
pp. 628-633
Author(s):  
Yi Chao Zhen ◽  
Zhen Yong Cen ◽  
Wei Feng ◽  
Xiao Hui Wang ◽  
Long Tu Li

Lead-free MnO doped 0.955K0.5Na0.5NbO3-0.045Bi0.5Na0.5ZrO3(abbreviate as KNN-0.045BNZ) ceramics have been prepared by a conventional solid-state sintering method in a reducing atmosphere. The addition of MnO suppresses grain growth and eliminates the liquid phase. MnO dopant changes the crystalline structures of KNN-0.045BNZ ceramics from the classical Morphotropic Phase Boundary (MPB) with rhombohedral phase (R) and tetragonal phase (T) to the suppressed MPB with R/T phase. The 0.4% MnO doped KNN-0.045BNZ ceramics show an excellent electrical properties with quasi static piezoelectric constantd33=300 pC/N, Curie temperatureTC= 350 °C, insulation resistivity ρ=4.83 × 1011(Ω・cm), and high field piezoelectric constants =438 pm/V (atEmax= 25 kV/cm). The results indicate that the 0.4%Mn doped KNN-0.045BNZ ceramic is a promising lead-free piezoelectric candidate material for commercial applications.


2006 ◽  
Vol 20 (21) ◽  
pp. 3081-3091 ◽  
Author(s):  
K. SAMBASIVA RAO ◽  
N. VALLIS NATH ◽  
P. MURALI KRISHNA ◽  
D. MADHAVA PRASAD ◽  
JOON HYUNG LEE

Materials with batch formula Pb (1-x-3y/2) R y Ba x Nb 2 O 6, where R=Y, (1-x)=0.73, 0.63, 0.53 and y=0.00, 0.02 have been prepared by the double sintering method. Substitution of yttrium (Y) restored tetragonal symmetry of PBN but reduced lattice parameters, cell volume and enhanced the density. Transition temperature of PBN has decreased due to the substitution of Y3+. Enhanced room temperature spontaneous polarization (Ps)=149.97 μ C/sq. cm has been observed in PBN53, which is above MPB, whereas enhanced value of Ps=112.74 μ C/sq. cm is found in Y: PBN63 at MPB region. The room temperature Pyroelectric coefficient (PRT=1.07) has been observed in the composition where maximum volume of Ps is obtained. Similarly, enhanced values of piezoelectric coefficients Kp=0.244, Kt=0.353, K31=0.131, d31=60, d33=159 and g31=3.65 have also been found in the same material PBN53. Substitution of Yttrium enhanced the stiffness constant 13.59 in PBN 73 to 14.27 of Y: PBN73.


2006 ◽  
Vol 510-511 ◽  
pp. 538-541 ◽  
Author(s):  
Y.-J. Son ◽  
Y.G. Choi ◽  
Joon Chul Kwon ◽  
K.W. Cho ◽  
Young Moon Kim ◽  
...  

In an approach to acclimate ourselves to the recent ecological consciousness trends, a lead free piezoelectric material, bismuth sodium barium titanate (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT), was considered as an environment-friendly alternative to the PZT system. A perovskite BNBT was synthesized by the conventional bulk ceramic processing technique.La2O3 as a dopant was incorporated into the BNBT system up to 0.025 mol, and the doping effects on subsequent piezoelectric and dielectric properties were systematically investigated. In the case of La2O3 addition, the formation of grain boundary coherency was remarkably increased, and the sintered density was increased with increasing La2O3 contents. Piezoelectric and dielectric properties were shown to have the maximum value at 0.02 mol of La2O3 addition. La3+ ions were believed to act as a softener in the BNBT system and to enhance dielectric and piezoelectric properties in this study.


2021 ◽  
pp. 2140006
Author(s):  
B. R. Moya ◽  
A. C. Silva ◽  
A. Peláiz-Barranco ◽  
J. D. S. Guerra

(1–[Formula: see text]Bi[Formula: see text]Na[Formula: see text]TiO3–[Formula: see text]BaTiO3 lead-free ceramics have been obtained from the conventional solid-state reaction sintering method. The structural properties were investigated from X-ray diffraction and Raman spectroscopy techniques. Results revealed well-crystallized ceramic samples with perovskite structure. Microstructural properties, obtained from scanning electron microscopy measurements, have shown high density with very low porosity level. The dielectric response, analyzed as a function of the temperature and several frequencies, showed very broad peaks with a strong frequency dependence of the temperature for the maximum dielectric permittivity for the modified system. Results were analyzed considering the influence of the BaTiO3 content on the studied physical properties.


Sign in / Sign up

Export Citation Format

Share Document